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A set of accurate expressions of elution-curve moments are derived from the moments of residence time
and displacement in a step based on probability theory. Then the problems about residence time and
displacement in a step of a solute molecule in the porous layer of capillary columns and in the moving
mobile phase are described by a set of mass-balance equations respectively. The set of equations are
solved in Fourier-Laplace domain, and the characteristic functions of residence time of a step, as well
as the moments, are obtained by means of computing software Mathematica. At last, using numerical
inverse Laplace transform, the elution curves for various conditions are calculated. In the case of large
desorption constant the results entirely coincide with those of mass-balance-equation theory and in the
case of small desorption constant they are equivalent to those of stochastic theory.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Because of the extreme complexity of chromatographic pro-
cesses, it is difficult to obtain an accurate elution curve by pure
theoretical calculation. Giddings and Eyring [1,2] gave an analytical
expression of elution curves for pure-rate-controlling adsorption
chromatography. However, in most cases, diffusions cannot be
ignored. Cavazzini, Felinger and Dondi et al. [3-6] used character-
istic function theory (CF theory) to obtain an expression containing
axial diffusions in mobile phases in frequency domain, then to give
the elution curves in time domain by numerical inversion. In the
model of Cavazzini et al., the diffusions in stationary phases and
the lateral diffusions in mobile phases are not considered. This is
correct for slow-desorption processes, because in these processes
diffusions do not play a major role. In most cases, elution curves can
be approached by Cram-Charlier series [7] or Edgeworth—-Cramer
series [8,9], or simply by Gaussian distribution. In this way calculat-
ing an elution curve is reduced to calculating its retention time and
moments. However, there have not been general moment expres-
sions suitable for various desorption constants. Moreover while
the skew of elution curves exceeds 1 much, they are hard to be
expanded in Cram-Charlier series or similar series at all.
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We have presented a new stochastic theory based on mass bal-
ance principle, in which the lateral diffusions are involved [10], and
used in linear capillary chromatography with uniform stationary
phases and with multiple-site nonporous layer stationary phases
[11,12]. But the case of porous layers is much more complex. In this
paper we intend to think over all the factors which affect the linear
capillary adsorption chromatography with porous layers, including
the desorption rates and both the axial and the lateral diffusions
in stationary phases and mobile phases, as well as the structure
of stationary phases, the pressure drop in mobile phases and so
on. Starting from a series of basic parameters such as the column
parameters (the column length, the column radius, the thickness of
porous layer, the porosity and the specific surface area), the operat-
ing conditions (the linear flow rate, the time distribution of sample
injection, the gas pressure drop along the column) and the physico-
chemical parameters of solutes (the desorption rate constants, the
distribution constants, the diffusion coefficients), we calculate the
elution curves and their moments, and compare them with those in
literature. However, in this paper we will still limit the study only
in the capillary columns, not concern the more complex packed
columns.

2. General Laplace transform of elution curves

According to the random walk model [13], a solute molecule
in a column can be imagined to move in the way of
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moving-adsorbing-moving alternately progressing and to go from
the inlet to the outlet step by step. The processes can be expressed
by following formula [10-12]:

n
Tc = Zf]
T (1)
an <L< an
j=1 j=1

where n is the number of steps for a molecule to pass through a
column, 7. represents the total time for a molecule to spend in the
column, 7; and 7; are the residence time and displacement in the
Jjth step respectively. Obviously, n, T, t; and #; are all random. The
second formula in Eq. (1) represents the condition that a molecule
leaves the column. Denote Z;:lrj and Z}; n; of given n by t;,
and n;, respectively, and denote the probability density function
(PDF) of (ny,, T) byf%r;](z, t) and the PDF of n,+1 by fu(z). Because
of independence of n,+1 and (1'n, T/5) in linear chromatography,
there is

Pa(ty <t <L <y + Mny)

t
:/ (/ f?}'nl';,l(‘z,’ t/)fn(z//)dz/dzu) dt/
0 Z'<L<z'+z"
[ o
= / / Sy (@, E)dz'dt / fo(Z")dz" 2)
0 J-oo L-z2'

where Pn(t, < t,n,, <L < nj, +npy1) represents the probability of
T, <t, n, <Land 0y + ny1 > L. Let fy:(z, t) be the PDF of the dis-
placement and residence time in an arbitrary step and f,,f(a), p) be
its Fourier-Laplace transform. Generally, we add a random variable
to the subscript of a function to indicate that the function is a PDF of
the variable and add a wave above the function symbol to represent
its Laplace or Fourier-Laplace transform.

fnr(w,p)=/ / for(z, £)e 7~ Ptdzdt (3)
0 —00

where i is the imaginary unit. Then we have

Fypo(@.9) = (e, p))" (4)

The PDF of 7, is given by

fz (1)

n

d ! ’ /
al’n(rn <ty <L <np+nni1)

L )
/ S0 (2, 0)dZ / fo(2")dz" (5)
—o0 L-z

Making Fourier-Laplace transform off,rf1 (t)withrespect to L and
t, we have

ffn(w,P) =/ / f,;l(t)e"“’L*Pdedt=g(w)(7n(w,p))" (6)
0 —00

where

glw) = % / Fo@' e —1)dz" (7)
0

The practical residence time should include all possible steps,
so its PDF should be

fre®) = fu(0) 8)
n=0

The function of fr.(t) contains the variable of L. Its
Fourier-Laplace transform with respect to L and t is

. [es) 00 — o0 . (w)
Frlw, p) = / / fee(0)e Phdzdt = for (@, p) = — 22—
0 —c0 =0 ; 1 —fnr(va)

(9)

The Laplace transform of fz.(t) with respect to t can be given by
inverse transform of f;.(w, p) with respect to w:

[
2n o 1= fye(w, p)

The integrand of Eq. (10) has a first pole at

Jee(D) e ldw (10)

w = w(p) 11)
which is determined by
fre(@.p)=1 (12)

Using the residue theorem, the integral of Eq. (10) is calculated
approximately to be

fre(p) = e7i@lPX (13)

Here we omit a factor related to the residue of g(w)/(1 -
fm(a), p)) at w=w(p), for not too short columns the factor has no
influence on results. So far, we obtain the Laplace transform of
elution curves without any additional conditions.

3. Residence time and displacement in a step

A step defined in this paper contains two parts: corresponding
to the static zone and to the moving zone respectively. Let (7, Ts)
be the displacement and the residence time in the static zone per
step, (7m, Tm) be the corresponding ones in the mobile zone, we
have

{t:rs—i—‘l:m (14)
n="ns+0m

Movement of solute molecules in static zones includes two
parts: diffusion in porous layers and adsorption-desorption on
solid surfaces. The corresponding displacements and residence
times are denoted by (751, Ts1) and (152, Ts2) respectively. Obvi-
ously all the (151, Ts1), (952, Ts2) and (nm, Tm) are random and
characterized by their PDFs. In our model the general diffusion-
drift equations are used to determine the PDFs [11,12]. In the case
of porous layers, the diffusion in pores can be approached by the
diffusion in homogeneous media, see appendix A. Thus taking into
account the adsorption-desorption on solid surfaces, the mass bal-
ance equations of solute molecules in static zones can be simplified
as

aC 92C 14C 92C /
o =D (a + rar) Dy +s) (kaCy k)
j
dCy; ,
TS = _kdjcsj + kajC
C(T,Z,t)‘tzo:Csj(r,z,t)|t:0=0 (15)
L -0
r r=R+d,
aC(r, z, t) _A(t)(z) v
—Dsr o . = "5xR EC(R, z,t)

where ((r, z, t) represents the concentration of solute molecules
in pores, C(r, z, t) the amount adsorbed by the site of type j per
area of solid surfaces, C and Cg; are their abbreviation respectively,
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Fig. 1. Schematic of capillary columns with porous layers. (A) a solute molecule entering the pores. (B) a solute molecule hitting the outside surface.

Dsq the axial equivalent diffusion coefficient in porous media, D
the corresponding radial equivalent diffusion coefficient, z the axial
coordinate of the capillary column, r the radial coordinate, t time, R
the inner radius of the column, d, the thickness of the porous layer,
&s the surface area occupied by per unit volume of pores, ky; the
desorption rate constant of site j, k'y; the adsorption reaction rate
constant, §(z) and §(t) are Dirac-6 function, v the mean velocity of
molecules. The last equation in Eq. (15) means thatatt=0and z=0
thereis a unitamount of solute molecules entering the porous layer,
and at t>0 at z there is an outgoing molecular flow with intensity
of vC(R, z, t)/2. Since the in-coming molecules are supposed to be
one unit amount and to concentrate at t=0 and z=0, 27R vC(R, z,
t)/2 is equal to the PDF of the residence time tg; and displacement
ns1 of a molecule after entering pores, i.e.

fogta (2, 1) = TRVC(R, z, t) (16)

Making Fourier-Laplace transform, we have

- 2C 10C .
pC = Dy (8r2 + r8r> — Dsq?C) +ESZ(I<dJC — kg€ Q)
~ ~ ~ . J
pCy = —kqiCy + k;jc i=12,...
C 17
?TC o (17)
r r=}i+d[
aC 1
—Dsrﬁ =57R 5C(R, w, p)
r=R
where
[o¢] o0 .
Gj= / / Cyi(r, z, )% Pt dzdt (18)
0 —00
C=C(r,w,p)= / / C(r, z, t)el®Z=Pldzdt (19)
0 —00
Eliminating Cg; from Eq. (17), it gives
C 109C
. <8r2+ r 8r> +AC=0
o
o =0 (20)
r=R+d,
aC 1
—DSTW 7R 2 C(R, w, p)
where
, k;j
A= —Dsqw” —p Eszp‘i‘kdj +1 (21)
J

From this the transform of f;, -, (z, t) is given as follows

oz (@, p) = / / Frarz (2, 1) Pt dzdt = TRUC(R, @, p) (22)

When a group of solute molecules crosses the interface of the
two zones from the moving one, only a portion equal to the porosity
& can come into the pores. And the rest of 1 — ¢ directly hit the out
surface, see Fig. 1. The PDF of the residence time of direct hitting
has been given by Ref. [11]. However the residence time from direct
hitting is much less than that from coming into pores and reason-
ably ignored. In this way the PDF of the displacement and residence
time in the static zone in an arbitrary step can be written as

fosts(2, ) = &fpgy 7 (2, ) + (1 = )3(£)8(2) (23)
fﬂsts(w7p)zgfn51151(w5p)+(1 _8) (24)

Movement of solute molecules in the moving zone includes the
diffusion and drift. From this the corresponding mass balance equa-
tions are obtained as follows

ac 92C 14C 92C aC
ot =Dmr (arz + ri)r) +Dmag —W(r)&

C(r,z 0) 0 (25)
aC 1 1
Pmrgr| = ~5-58@23() + FvC(R. 2. 1)

where ((r, z, t) is the concentration of solute molecules in the mov-
ing zone, C is the abbreviation, Dy and Dy, the axial and radial
diffusion coefficients in the mobile phase respectively, w(r) the lin-
ear flow rate at r, u the mean linear flow rate. In the case of laminar
flow, there is

2u

_ 2 _ .2
w(r) = 25 (R = 2) (26)
Making Fourier-Laplace transform of Eq. (25), we have
d?C  1dC By
Dmr (dﬂ + rdr) + (A1 —Aré))C=0
dc 1 27
~Dpnr - TR + C(R ,p)
where
Al = —Dmaa)2 + 2iuw —p
A 2iuw (28)
2=

The PDF and its transform of the displacement and residence
time in the moving zone in an arbitrary step are derived from C and
C as follows

Somm(2, £) = TRVC(R, z, 1) (29)
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ﬁ?mfm(w’ p) = ﬂRUE(R, w, p) (30)

According to the characteristic function theory of probability, the
characteristic function of the sum of independent random variables
is equal to the product of the characteristic function of each one. So
we have

Fre(@. D) = Frsns(@, PV (@, P) (31)
4. Moments of elution curves

Substituting Eq.(31) into Eq. (12) and finding w = w(p), then sub-
stituting w(p) into Eq. (13), we finally obtain the Laplace transform
of the peak profiles. The nth cumulant of the peak profiles can be
derived from the Laplace transform as follows [7,10,14]:

M;, = (—1)"8% InFe.(p))] . = Len (32)

where M) =tg, M), =M, = Ufc, Mj = Ms, etc, tg is the retention
time, M, or 03( are the second central moment or variance of elu-
tion curves, M3 is the third central moment. All the work can be
completed by Mathematica, see Appendix B. The results are as fol-
lows

5. Elution curves

In principle the expression of elution curves can be obtained by
inverse transform of Eq. (13) with respect to p. However, only in the
simplest case, i.e. the all diffusions can be ignored and the surface is
of single-site, we can obtain the analytical expression. In this case,
we have

R(2A; — A2R?) sAd1(2R+d1)> (39)

= 1
fnr(a)ap)=1+; < ) + R

where A, A and A; are determined by Egs. (21) and (28) with Ds; =0
and Dy = 0. In this way, the Laplace transform is

.f‘fc(p) =

Making inverse transformation of Eq. (40), we have

kyr/ Ktm
F(£) = e nkatt=t) (‘d < L (2kq (rkt;n)(tr;nma(rt;n)) (41)

\/t=th

e—k’kdfm—Dfm+((k/k§fm)/(P+kd)) (40)

where n=k'kyty, represents the mean times of solute molecules
being adsorbed by sites during their passage through the col-
umn, t/, = (1 + B)t;,; the mean time for unretained material to pass
through the column, I;(x) the modified Bessel function of the first

tg = (1 + k)t (33) kind. Except for the term of §(t—t'), Eq. (41) is identical to the
formula derived by Giddings and Eyring completely [1].
M, If ignoring merely the radial diffusions, similarly to derivation
5 - ) of Eq. (40), we can derive the Laplace transform of elution curves
2(1 +k)*(Dma + BDsa) (1 +6k+11k*)R k°Rd, 2k’ as follows
— + =
u? 24Dy 3eDsr y
N Ndm—\/ 14+2p/Ng)try 1y (g i)/ (1+P7)))
X tm (34)  Felp)=e e (42)
12(1 + k) (Dma + BDsa)? 1+ k [ 2kRdi(kDma + (1 +2k)BDsa) ~ R2((1 + 5k + 7k2)Dpma + (2 + 10k + 11k2)BDsq) 12K/ (Dma + BDsa)
Ms; = yy + — + + —
u u &Dgy 2Dy kd
, k3R2d2 , /
+(3+37k+165k2 +251k3)R* . (3+11k)R? [ Kk*Rd, LA [, 2kkRd 6K\ (35)
QGOD?", 4Dy 6&Dsr k SSZDSZ,. eDg kg k2
ST d
b — 2(Dma + BDsa) L u (1+6k+11k2)R?2  k2Rd, . i (36) where Ng=Lu/(2Dq), Dg=Dma+ BDsa, Pgj = k;]j/k;, ky = k;lj,
u (1+ k)2 24D, 3¢eDs Ky

where t;; is the time for the fluid to pass through the column, H
the theoretical plate height, § the ratio of the pore volume in the
static zone to that in the moving zone, k' the ratio of solute amount
adsorbed by solid surfaces in the static zone to that in the moving
zone, and we call it the adjusted retention factor, k the ratio of solute
amount in the static zone to that in the moving zone and called as

the retention factor, kfj special average of k! i they are calculated as
follows

d
B = R—é(ZR +d))e
k' = Besk

k=k+p ) 37)

i

1 K;
i (128
j 7]

where K; is the distribution constant on site j, K is the total distri-
bution constant.
/
i
J kdj

K=K
j

j
Tsi=1/kgq;. After replacing the variable p by —iw, Eq. (42) becomes
the same as that of Ref. [5] formally, but here the D, contains the
axial diffusion in the static zone and the effects of multiple-sites
have been added.

Once taking into account the radial diffusions, we are not able
to obtain an analytical solution of @ from fm(w,p) =1, thereby
not able to give an accurate Laplace transform of elution curves,
instead we can give an approximate or numerical Laplace transform
only. No matter whether the radial diffusions can be ignored or not,
except for Eq. (41) we are not able to give an expression of elution
curves by inverse transform. For all cases a general method to obtain
the elution curves is the numerical calculation by following formula

jmax

ft) = %Re D eieleilintn 4 0.5 (43)
j=1

where Ap is real-number step size, pj=—i (j—1) Ap, ty is the nth

set value of t for calculating f(t). The calculation of Eq. (43) can be
completed by Mathematica, see Appendix C.

6. Effect of pressure drop and extracolumn

There are many papers in the literature discussed the effects of
pressure drop and extracolumn on the second moment and the the-
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oretical plate height [19-24]. For compressible fluid, the pressure
at z in a column can be expressed by

(P2 —P2,,)z
2 out
p2 _ “in__out (44)

P(z) = T

The pressure drop will cause change of linear flow rate and
diffusion coefficient as follows:

Uout Pout
u(z) = PQ) (45)
Din(z) = Duut% (46)

where Poyt, Uoyr and Doy denote the pressure, mean velocity and
diffusion coefficient at the outlet, P;, the inlet pressure, P(z), Diy(z)
and u(z) are the pressure, mean velocity and diffusion coefficient
at z. In case the performance of columns varies with position z, the
coefficients c, in Eq. (B4) become functions of z, and instead of Eq.
(B4) the moments need to calculate by integration:

L
M, = / cndz (47)
0

In order to calculate the elution curves with consideration of
column-performance change, we divide the column into many
short pieces so that the performance in each piece keeps unchanged
and Eq. (1) holds true. In this way, for the jth piece, we have

fire(p) = e7 4P (48)

where w; denotes the w in piece j, Az is the piece length. For the
whole column, there is

L
Feulp) = e idoyeipng — 71 Jo o0 _ oioipt (49)
where
" w(p)
d)(p):/ P4, (50)
, L

There are many types of time distribution of sample injection
[23]. Here we only take the following as an example:

1 O<t<tg
fu®)=¢ t = (51)
0 t >t

where t;, denotes the width of injection time. The Laplace transform
of fin(t) is

fp) = I%(l e Plin) (52)

Suppose that the additional residence time from the extracol-
umn effects except the sample injection is of a Gaussian distribution
with variance o2, then the Laplace transform of elution curves
needs to multiply by a factor of exp(o2,p?/2).

With consideration of column-performance change, injection
function and the other extracolumn factors, the equation of numer-
ical inverse transform, Eq. (43), needs to be replaced by

jmax
A =~ (02,p? /2)-id(p;)L
fltn) = 7pRe > Finlpye” pj/2-ieek g 5 (53)
i=1

7. Discussion

The famous equation of theoretical plate height H for capillary
porous-layer partition chromatography derived by Golay [15] is

szom 1<1+6kc+11k§

L1 8+32k 8k2 o2
2
u 24 (1+ke)

(1+ke)? (1+ke)? %2
R2u k3

. Ru (1+2a2) R?u
Dm ~ 6(1+kg)?

F2K2 D,

(54)

where kg denotes the retention factor defined in Golay’s equation,
which is slightly different from k in this paper, k=20a, + (1 +2a5 kg,
o1 R represents the mean length of a tortuous path, «, is equal to
the product of € and §;, where §; = d;/R, F is the ratio of the total sur-
face area in the porous layer to the surface area of the moving zone.
Substantially, the sum of the second and third terms in Eq. (54) is
equal to (1 +6k+11k%)R2u/24(1 +k)2Dy, which can be proved if we
substitute k for kg and expand itin series of ay. Supposing the orien-
tation of the paths is isotropic, the mean value of oz%R2 will approach
to 3 d?. So the fourth term in Eq. (54), k2a?R?u/3(1 + k¢ )Y a2Dm,
can be deduced to k2d?u/(1+ kc)?€Dmdy. When 8; < 1, k¢ and k
are nearly equal. Replacing k¢ by k and Dy, /3 by Dg;, the fourth term
can further be deduced to k2Rd;u/3(1 +k)?&Ds;. At last, according to
the definition of F and K, there is FK=kg(1 +2a)R/2d,. Substituting
the expressions of FK into the last term of Eq. (54) and considering
that kg~ k~k/, this term can be simplified to 2k’dl§u/3(1 + k)zD,.
In this way, the Golay equation of Eq. (54) can be rewritten in the
symbols of this paper as follows
2 2k'd?
k Rdl 4 f ) (55)

3¢Ds | 3D

2\p2
y_2m  u <1+6k+11k)R

u (1+ k)? 24Dy,

Comparing Eq. (55) with Eq. (36), we find that all terms of Eq.
(55)except thelastone are contained in Eq.(36). The exceptive term
is brought from the diffusions in the liquid films on solid surfaces,
and in this paper we only study the adsorption chromatography
in which there are no liquid films, so Eq. (36) does not have this
term. By the way, if to use the model of this paper in the partition
chromatography, this term appears at once. But the derivation is
complex and beyond the scope of this paper. Any way, Eq. (55) lacks
the terms corresponding to the axial diffusions in porous layer,
2Dsq/u, and the reaction rate term, 2k'u/(1 + l<)2kd.

The moment expressions from CF method of stochastic theory,
rewritten by the symbols of this paper, are as follows:

/ 2 !
My = <2Dm(12+’<) + 2f> (56)
u kd

2 3 / ’ 7
. (12Dm(1+/<) . 12Dmk(1+k)+6k> (57)

u4 u? kd 1:2
d

Here we add the effects of multiple-sites in the results of Ref.
[5]. Compared with Egs. (34) and (35), we find that Egs. (56) and
(57) lack the terms related to the radial diffusions in the moving
zone and all diffusions in the static zone.

Letting d;— 0, the moment expressions of Egs. (34)-(36)
become the same as the previous results of ours [11].

According to theory of gas adsorption [16], the number of
molecules striking a unit area of solid surface in unit time is vC/4,
where C represents the molar concentration near the surface. Sup-
pose that total active surface, i.e. the surface occupied by all active
sites, has a portion P, in the total surface and the reflection coeffi-
cient on the site is ¢, in equilibrium we have

%c — kyCs (58)
where
kq = Tloe—QﬂRT) (59)
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Fig. 2. The relationship of retention factors, adsorption heat and condensation coefficients. §; =0.2, £=0.6, &5 = 106/cm, v=400m/s, T=293 K.

From Egs. (58) and (59),

G e wrn _ K
K= c = 4vot T0€ = kg (60)
where
o =(1-a)P, (61)
1
kKq= Zvo(’ (62)

Q is the molar adsorption heat, R the gas constant, T the
Kelvin temperature, 7o the oscillation time of adsorbed molecules,
19~ 107135, ’ is the condensation coefficient. Substituting K into
Eq. (37), we have

K = %voz’ﬂssroe*Q/(RT) = %kdva’ﬁss (63)

From above equation it can be seen that for constant ¢/, the
smaller the kg, the larger the k'. In other words, the larger the Q, the
larger the k'.

Fig. 2 gives an intuitionistic numerical relationship of k' and Q.
In Fig. 2, the two dashed level lines correspond to k'=1000 and
k'=0.1, respectively. Generally, that k’ falls outside the two lines is
not suitable for analysis. Hence when the Q is very large, the & must
be very small in order to make k’ falling inside the two lines. &’ may
decrease, for example, by adding some inert surfaces to reduce Pg.
Besides o/, the factors of §}, &, &s and v, etc. can also affect the value
of k/, especially the factor of & can affects k' by several orders of
magnitude.

Fig. 3 gives the relations of the theoretical plate height and the
desorption rate constant with given k'. In the figure three kinds of
curves, by CF method, i.e. from Eq. (56), Golay equation, i.e. from Eq.
(55) with d;=0, and this paper, i.e. Eq. (36), are simultaneously plot-
ted. From the figure we can find that the relations from CF method
and Golay equation are entirely different. CF method is suitable
for small kg4, in which desorption rate is the controlling factor, and
Golay equation is suitable for large k4, in which diffusion is the con-
trolling factor [17]. And the results of this paper coincide with that
from CF method completely when kg is very small and coincide
with that from Golay equation when k; is very large. This shows
that the model of this paper is suitable for both cases of small k4 and
large k4,and combines the both effects of diffusions and desorptions
into a united equation. From Fig. 3 it also seen that H calculated by
this paper and Golay equation decreases with increasing of Dp,. But
the results by CF method are just the reverse. This is because that

the radial diffusions are neglected here and under the given condi-
tions the effects of radial diffusions are lager than axial diffusions.
Fig. 3 also shows the relations of H and Q because Q and k; are of
one-to-one correspondence.

Skew is defined as

Ms
S— (64)
M/

where S represents the skew. Fig. 4 shows the relations of skew
to adsorption heat and desorption rate constants for the single-
site model. From this figure it is seen that skew increases with
decreasing of k; and k' when k’ is not extremely small, but sud-
denly becomes quite small when k' is close to 0. This means that
skew increases first then decreases with k’ increasing from k’=0.
For small k4 and small but not zero k’, skew becomes very large.
But for sufficiently large kg4, in despite of the value of k¥, the skew is
always small.

In the case of multiple-site, suppose the adsorption heat of site
Jis Qj and the desorption rate constant is kg, then

ke = Tloefej/wn (65)
S P D,=0.0001cm?/s
G ' 0.001
g 'la 0.01
T |G 0.1
0.01 ¢ o - 0.1
—__ CE___ 0.0l
w0 S cp 0.001
SgE 0.0001
0.01 1 1;() 164 166 163 10'10

k,f/ S

Fig. 3. The relation of H to D, and k4. G means the curves are calculated by Golay
equation, CF by characteristic function of stochastic theory, the dots by this paper.
L=20m,R=0.01cm, u=50cmy/s, k'=2, =0.264.
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Fig. 4. The relation of skew and adsorption heat for single-site. L=20m, R=0.01 cm,
u=50cm/s, D, =0.1 cm?[s, § =0.2, £=0.6, & =10°/cm, v=400 m/s, T=293 K.

From the principle of chemical equilibrium, we have

(1 — aj)PqP;

1 C=keCy (66)
From Eq. (66),
;1 L
ke = Zv(] —;j)PqP; = Zvoszj (67)

where P; is the abundance of site j, equal to the ratio of surface area
occupied by this site to that by all sites, ; is the reflection coefficient
on site j, otji = (1 — a;)Pq is the condensation coefficient. Substitute
above kg; and k;j into Eqs. (37) and (38), then re-substituting the
results into Egs. (33)-(36) and (64), we can obtain the retention
factors, the retention time, the theoretical plate height and the
skew, etc. for different Q;. Introducing k]’. into the expressions of
the moments,

K = %va]fﬂesterf/(RT) (68)
where k]’. represents the adjusted retention factor of site j, we can
obtain the moments for different k.

Fig. 5 gives the intuitionistic relations of skew to abundance P,
in two-site case under different k’; and k’,. From this figure it is
seen that all curves of skew vs. P, are similar, they all increase first
and then decrease with increasing of P, and reach a peak value at
a small P,. For given kg, the curves shift to the left integrally as k',

skew

100 ¢

10

0.1t

10-10 10-8 1076 104 0.01 ) P2

Fig. 5. The relation of skew and abundance for two-site. k'1 =2, k4 =108/s. (a)
kaz =0.01/s, (b) kgp =0.1/s, (€) kgz =1/s, (d) kay =10/s, 1. k'2 =2, 2. k' =20, 3. k' =200.
The other parameters see Fig 4.

skew
100

10

0.1 / 6

0.01

>0 Q'/kcal

5 10 15

Fig. 6. Relation of skew to adsorption heat distribution. &’(Q)=constant for each
curve. Q; =4kcal, Q2 =20kcal, 1. o0g=0kcal, 2. 0¢9=0.1, 3. 00=0.2, 4. 0¢=0.3, 5.
00=0.5,6.00=1,7.0¢0=2,8.00=3,9. 0¢g=5, 10. 0¢=100, (a) k' =1, (b) k' =100.
The other parameters are same as in Fig 4.

increases. For given k'5, as kg, decreases, the peak values of skew-P,
curves increase and even get very large. These plots are analogous
to those of Ref. [4] qualitatively.

In the case of continuously distributed sites, &’ and kéi are related

to the adsorption heat Q, and the calculation of K and kfj should be
replaced by integration:

k(@)= 28 = 2roe? (@) (69)
K=31 / e/ a/(Q)P(Q)dQ (70)

-1
~ 1 [ KQ) [ &(Q)P(Q)/kq(Q)dQ
k= = ~="P(Q)dQ = y

d (K / ki (Q) ) [ e(Q)P(Q)/K1(Q)dQ
where «’(Q) denotes the condensation coefficient on the site with

adsorption heat of Q, P(Q)dQ represents the abundance of the site
with adsorption heat in (Q, Q +dQ),

o'(Q)=(1-a(Q))Pq (72)

where «(Q) is the reflection coefficient on the site with adsorp-
tion heat Q. In the case of continuous distribution, the relation of
elution-curve moments to adsorption heat is very complex. It is
not only related to adsorption heat distribution P(Q), but also to
o/(Q). Fig. 6 gives the relations between skew and the parameters
of distribution under the conditions «’(Q) = const and

(71)

"2
P(Q)Z{e(QQ)/zag2 0 <Q<0, 73)
0 Q< or Q>Q

In the figure, curves 1, 2 and 3 almost coincide completely
with each other. Curve 1 just corresponds to single-site case.
So above curves show that the surface with continuous dis-
tribution of og<0.2kcal can be considered as uniform. In the
region of og<0.5kcal skew monotonously increases with Q.
When o is between 0.5kcal and 3kcal, skew increases first
and then decreases with increasing of Q. When oq reaches
a very large value, the adsorption heat distribution turns to
uniform, and skew becomes independent of Q. For given
smaller Q' skew varies sensitively with og, for example, at
Q' =7kcaland k=1, 0g =0.5 kcal leads to skew =0.0067, o g =2 kcal
leads to skew=13.4 and og=3kcal leads to skew=3.5. The
curves of different k' are similar, but larger k' gives smaller
skew.

Fig. 7 gives several elution curves of single-site model. From
this figure we find that curves 1, 2 and 3 are all split to two parts: a
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Fig. 7. Elution curves for single-site model. 1. k; =0.05/s, skew =1.06, n=4; 2. k; =0.08/s, skew=0.84, n=6.4; 3. k;=0.1/s, skew=0.75, n=8; 4. k; =0.2/s, skew=0.53, n=16;
5. kg=1/s, skew=0.24, n=80; 6. ky=10/s, skew=0.075, n=800; 7. ks =100/s, skew=0.024, n=8 x 103; 8. ky=10%/s, skew=0.0072, n=8 x 10°; 9. k; =10%/s, skew =0.0069,
n=8x107.10.L=25cm, u=0.2 cm/s, D;; = 1073 cm?/s, kg =0.008/s, k' =4. For curves 1-9, k' =2. The other parameters are same as Fig. 4.

sharp peak, corresponding to unretained molecules, and a short fat
peak, corresponding to retained molecules. This phenomenon was
reviewed in ref. [18]. Note, the three unretained peaks are located
at the same position originally, for clarity we move curves 2 and
3 to right a bit. From curves 1-9, the corresponding k; increases
from 0.05/s to 108/s. As k, increases, the unretained peaks become
smaller and smaller and the retained peaks become higher and
higher, narrower and narrower, at last, for slightly large k; the
unretained peak disappears completely, leaving the retained peak
alone and for very large ky the retained peak becomes indepen-
dent of ky. Actually, an elution curve is split or not is controlled
mainly by the mean times of being adsorbed, which is denoted by

n,n=Kkkyty. The probability that a molecule is never adsorbed dur-
ing the course of passing through the column can be calculated by
e, So for large n, the probability tends to 0 and the unretained
peak disappears. And for small n, the probability tends to 1 and the
retained peak disappears. Besides n, the splitting is also controlled
by the difference of position of the two peaks and by the width of
slow peak. From Fig. 4 it has been seen that when k’ and k; both
are small, the skew will be very large. But the large skew is only a
theoretical value calculated from whole elution curve, and in prac-
tice, in this case the n is very small, and the observed curve is an
unretained profile and has good symmetry with small skew. The
characteristic of elution curves for single-site model stated here

a a,’ 207 b |‘I.‘| C

0.020 [
> [ 0.007

\
0.020 i3] A i

0.015 (|
| 0.005

|

|
1ol L 0004

0.010} | [
[ .1 0003

F N
[\ 0002

i 0.5} 1\
0.005 Fl\y o1
A 200 400600
150 200 250 300 130 131 132 133 134 135 t/s

Fig. 8. Elution curves for two-site model. The curves with dots are given by Eq. (55), the curves without dots are by CF method [4,5]. k'1 =2, k'2 =20, kg; =108/s, kg, =0.1/s. (a)
P, =0.06, skew=0.97,n=4.8; (b) P, =0.001, skew=7.3,n=0.08; (c) P, =0.2, skew=0.53, n=16. The other parameters are same as Fig. 4.
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Fig. 9. Tailing caused by minor slow-site. k'y =2, k' =20, kq; =108/s, the other
parameters see Fig. 4.

is similar to Ref. [4]. However, because of neglecting radial dif-
fusions the unretained peak plotted by CF method will be higher
and narrower. This can be shown by curves 10, the parameters of
which are specially set as the same as Fig. 3 of Ref. [4]. The retained
peaks by CF method and this paper are not different because in
the case of small k; they are less affected by the parameters other
than kg.

Fig. 8 shows the varying of two-site elution curves with abun-
dance of site 2. The curves in Fig. 8 are calculated by two methods:
Eq. (42) with Dsg =0, corresponding to CF method [3,5], and Eq. (43)
of this paper. The curves with dots are calculated by Eq. (43) and
the curves without dots are by CF method. In Fig. 8a, an elution
curve is split to two peaks: the first peak corresponds to the sites
with large ky and is unretained by the sites with small k4, which
we can call a quick peak, and the second peak is retained by the
slow-site, which can be called a slow peak. In Fig. 8b there are only
the quick peaks, and in Fig. 8c there are only the slow peaks. Sim-
ilarly to the single-site case, whether an elution curve is split or
not is also determined mainly by n, here n = Pk, kg>tm and repre-

4017

sents the mean times of being adsorbed by the slow-sites. In Fig. 8a,
n=4.8, the probability of unretained by slow-sites is 0.82%. i.e. the
area of the quick-site peak is 0.82% in the total area of the elu-
tion curve. Although the portion is small, the peak is very distinct
because it is very narrow. In Fig. 8b, n=0.08, the portion of the
quick-site peak is 92.3%. Although the slow-site profile or tailing
has a portion still as much as 7.7%, it disappears completely because
it spreads too broadly. In Fig. 8c, n =16, the portion of the quick-site
peak decreases to 10~7 and the whole elution curve is controlled
by slow-sites completely. By comparison of the results of the two
methods it can be found that the quick-site peaks calculated by this
paper are fatter and shorter than those by CF method, and the slow-
site peaks are not different. The reason for this is similar to that
for single-site case, i.e. in the CF method the radial diffusions are
neglected.

Fig. 9 further illustrates the influence of minor slow-sites on
elution curves. From this figure it is seen that a small amount of
slow-sites causes a long tailing. As the abundance of slow-sites
decreases the tailing descends also, but the decay rate of the tail-
ing is unchanged, basically equal to kg,. It is also seen that for very
small P, and kg5, the tailing becomes very low, and the correspond-
ing skew becomes very large. However, the small tailing can be
observed only in semilog plot theoretically and in practice it may
be drowned by noise entirely.

Fig. 10 gives the curves with continuously distributed adsorp-
tion heat. From this figure we can see that the curve 2, whose o¢
is 1kcal, is completely identical to the curve with og=0Kkcal, i.e.
the case of single-sites. This means that the elution curves with
continuously distributed adsorption heat have no significant dif-
ference from that of single-sites provided o is not too large. From
curve 2 to curve 8, o is from 0 kcal to 100 kcal, the peak symmetry
becomes worse and worse. It is interesting that in the figure curve 4
has the maximum skew of 13.2, but it does not look the worst sym-
metrical, and curve 8 looks have the worst symmetry, but its skew
is 2, not the biggest. Comparing curves 8, 9 and 10, we find that
under the condition of g =100kcal, with k' increasing the skew
decreases and the symmetry increases.
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Fig. 10. Elution curves for continuously distributed adsorption heat. «'(Q)=constant for each curve. Q; =4 kcal, Q; =20kcal, Q =7 kcal, k' =2 except curves 9 and 10; 1.
o0q=0Kkcal, skew=0.0069; 2. 0¢=1, skew=0.0069; 3. 0q=1.5, skew=0.26; 4. 0¢=1.8, skew=13.2; 5. 0g=2, skew=9.43; 6. 0g=3, skew=2.49; 7. 0¢ =5, skew=2.11; 8.
0o =100, skew=2.03; 9.0 =100, k' =10, skew=0.92; 10. 0o =100, k' =100, skew =0.29. The other parameters see Fig. 4.
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Fig. 11. The effect of pressure change. uoyt =50 cm/s; Doyt =0.1 cm?/s; Py =1atm,
1. Py, =1.2atm, R=0.025 cm, t;, =44s; 2. P, =2,R=0.01, tn =62; 3. P, =7.7,R=0.005,
tm =260. The other parameters see Fig. 4.

Fig. 11 shows the effect of pressure drop on elution curves in
gas adsorption chromatography. In the figure, the label of no pres-
sure correction means the linear velocity of fluid and the diffusion
coefficient both correspond to the average pressure P = 2(1 + Pj, +
Pl.zn)/B(l + P;,), without regard to their changing with position. In
the figure, curve 1 actually contains two coincided curves: one has
been corrected for pressure and the other has not. This means that
when P;, < 1.2 atm, the pressure correction is not necessary. But
when P;, > 2, the peak becomes shorter and fatter after pressure
correction, see curves 2 and 3. It is noticed that curve 2 is narrower
than curve 1. This is because the column radius of curve 2 is less
than that of curve 1, which reduces the contribution to peak width

t/t=0, 0.1%

0.8¢
\ 1:in/‘tn’lz 1%
0.6F
0.4 /\\tin/tm_ 5%
024 \ \ \\tin/tm: 10%
\ tin/tm: 20%
T S t/s

130 135 140

Fig.12. Effect of injection on elution curves. The calculation conditions are the same
as curve 9 of Fig. 7.

I I']"’AI'

Fig. A1. Schematic of a pore orientation.

of radial diffusions. But the radius of curve 2 is less than that of
curve 3 also, this time the curve 2 is broader than curve 3. This is
because that the time for fluid to pass through the column of curve
3 is extended greatly and the axial diffusions take effect.

Fig. 12 shows the effect of injection time on elution curves.
When the variance from inject time reaches a comparable value
with that from Eq. (34), the effect starts to appear. In this figure we
can see that the curves with t;,/t;; =0.1% and t;,/t;; =0 are in com-
plete agreement, indicating that injection has no effect on elution
curves in this case. Injection time less than or equal to 0.1% of t,;; cor-
responds to length of sample tube less than or equal to about 0.1% of
column length. This means, for example, for a column of 20 m long
the sample tube up to 2 cm long does not affect the elution curves.
When the injection time reaches 1% of t;, the peak of elution curves
is slightly shorter, showing that the injection has a slight effect on
the curves. When the injection time exceeds 5% of t;;, elution curves
are severely affected and the peaks become fatheaded.

8. Conclusions

In this paper, a set of mass balance equations with special
boundary conditions are used to calculate the joint probability
density function and the moments of the residence time and the
displacement in porous layers in a step, i.e. the step moments and
step PDF for the static zone. Again, a similar method is used to
obtain the step moments and step PDF for the moving zone. Then
probability theory and numerical inversion are used to derive the
retention time, the height equivalent to a theoretical plate, the skew
and the elution curves from the step moments and the step PDF.
By compared with the classic mass balance equation theory and
the stochastic theory, the results from this paper are in agreement
with those from the two theories in the regions where they hold
true separately. From this we can conclude that using mass balance
equations to describe the probability distribution of residence time
is effective and rigorous and the model of this paper is more general.

The relationship of elution curves and their moments with the
step PDF and the step moments is derived only based on prob-
ability theory without referring any practical chromatographic
models, and it is universal. Therefore as long as we present a set
of correct mass balance equations to describe the step probability
distributions, we can obtain the elution curves and their moments
for any types of linear capillary chromatography in similar way to
this paper.
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Appendix A. Approximate diffusion equation in porous
media

Suppose there is a pore of an included angle 6 with the radial
axis r, see Fig. Al. Set C the solute molecular concentration in pores
at r at t, S’ the cross section area of the pore, S the section area of
the pore cut by the interface of r=r; and dC/dr the concentration
gradient along r direction, then the concentration gradient along
the pore axis is dC/dl = cos(8)dC/dr. Since S’ =S cos(8), we have
. ] S dc
J=5="Pngr =
where J is the total amount of solute molecules diffusing outwards
at the interface ry per unit time through the pore [, j is the amount
per unit section area of pores per unit time, Dy, is the diffusion
coefficient of the solute molecules in the mobile media. Suppose

—Dn, cosz(e)?j—f (A1)
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the orientation and cross section area of pores are independent of

each other, and the orientations are homogeneously distributed,
after averaging over all pores we have

C%MO /Ml o(n, T), etc. Generally, ¢, can be given by the fol-
lowing recurrence formula:

k

Cn = W a1, 7) = ZMl k(7 T)( k)'k'cn k+22m m,k— w15 TVm k1

————dC D dc
2 m
j = Dmcos2(0)— =3 3 (A2)
n-1
1
k=1
"1
an,m = —Zﬁan—Lm—jHCj
j:
ao,m = d(m-1)
Let
D
D= (A3)
We have
dc
j= *DE (A4)

where D is an equivalent diffusion coefficient. From this it follows
that

aC
5 =DAC (A5)

Eq. (A5) shows that the diffusion equation in the porous media
can be equivalent to the equation in the uniform media, however
the diffusion coefficient is an equivalent one.

Appendix B. Derivation of moments

The nth cumulant of an elution curve can be derived from its
Laplace transform by Eq. (32). However, f,c(p) is a complicated
implicit function of p and its higher-order derivatives are very dif-
ficult to calculate even by computing software. Therefore, in order
to obtain the moments expediently we would rather first expand
fnsl 1, (w, p)inseries of d; andfnmrm (w, p)inseries of R, then calculate
the elution-curve moments by Eq. (32). In order to calculate accu-
rate moments up to order 3, it is necessary to expand fnﬂ 75 (@, D)
in 5th order series of d; and f,,mfm(w, p) in 11th order series of R.

From Egs. (3) and (12), we have

SO Mg P g (1)

n=0 m=0

where M,?’m(r], 7) denotes the origin moments of nth order for
and mth order for t. M,?’m(r), T)is given by

m 3n+mfm(w, p)

MR (1, 7) = i7(=1) (B2)
ow"omp 00,90
Expanding w in series of p as follows
.y
. n n
w=iy (=) (B3)
n=1
Substituting Eq. (B3) into Eq. (13), then from Eq. (32), we can
obtain
M, = Lcy (B4)

Substituting Eq. (B3) into Eq. (B1) again, we can obtain ¢, as fol-
lows, c; = Mg 4 (1, T)/MS (1, T), ¢2 = (MQ 5(n, T) = 2c1M7 4 (n, T) +

k=2 m=2

where a, ,, are intermediate variables, §(m) is the discrete § func-
tion. The resulted moments above can be simplified further by
change of variables as

k.
zj: p +a]kdj
=> P
i=0 j

, —(=p)
= Zkaj ki+1
j

i=0 dj

k. 1
a i
Pl _K§ :(—p) K

dj i=0

ki
j i=0

where K, K; and kz are defined by Eqgs. (37) and (38). According to
above expression and Eq. (37), Eq. (21) changes to

A=Dsaw2p<1+’; <1+Z(_f)l>> (B6)
i1 k;

Egs. (B2) and (B4)-(B6) are all used in the program for deriving
moments.

The program is written in Mathematica of Walfram. In the pro-
gram, fs, fm, fsm, MOnt(n,m), c[n], a[n, m], kdw][j] and kp represent

Fraza (@, D), Fomen(@, D), Foe(@, D), MY m(n, T), Cn, anm, kiy and K
correspondingly, the other symbols have the same meaning as
in the text, but all subscripts are written in the normal position.
Faear (@, p) and fyem (@, p) are complex functions of molecular
velocity v. However, parameter v plays little role in the ultimate
results [11]. To simplify the results, in the programf,,s1 7, (@, p) and
f,,m (@, p) are expanded in series of 1/v and the higher order terms
of 1/v are omitted.
The program is as follows:
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(xSolve eq. (20) and find (w,p) ,i.e.fsx)

:”:1751
il

fs = Normal[Series[rr*R*v*y[r] Lo DSolve[{Dsr* (y' "[r]+ — %y [rl)
r

+Axy[r] =0, y'[R+dl] ==0, -Dsrxy'[R] == (L-mnxR*xv*xy[R])
/ (2*7r*R)}, vr], r][[l]] /.ToR, {V, o, 1}]] // Simplify;

(xSolve eq. (28) and find f.,m:m (w,p) ,i.e.fmx*)
1 2

ym[r ] =vy[r] /. DSolveHDmr* (y' "[r] + = xy! [r]) + (Al-A.?*r ) *y[r] == },
T

virl, r] [[1]] /- C[1] »0;
fm = Normal [Series[n*R*vxym[R] /. Solve[Dmr *ym ' [R] ==
(1-mxR*vxym[R]) / (2«7m*R), C[2]1]1[[1]1], {v, o, 1}]] // Simplify;
(xExpand f'?sL“:l (w,p) and f’:mtm
fs = Normal [Series[fs, {dl, 0, 5}]] // FullSimplify;
fm = Normal[Series[fm, {R, 0, 11}]] // FullSimplify;

(xConstruct f,;(w,p) and omit the terms of higher order power of 1/vx)

(w,p) *)

fsm = Normal[Series[(exfs+1-€) *xfm, {v, o, 1}]]"
(xCalculate c, by recurrence algorithmx)

MOnt[n_, m_] :=4"% (-1)’“*D[fsm/. {Al—»—Dma*w2+2*J'1*u*w-p,

2 %1 k - m-l . y3
AZAM,A->-Dsa*w2-p* B 1+ & +1 },
RZ B £ kaw[3]

{w, n}, {p,m}] /. {w>0, ps0};

afn , 1] :=Which[n == 0, DiscreteDelta[i-1], n>0,

i
->a[n-1, i-j+1]*c[3] /3!, True, 0]:

3=1
m=1 ; 2
1 ! *MOnT[1, m-
c[m ] i= ———— % MOnt[O,m]—Zm ol ﬁt[ j]fc[‘n ]
MOnt[1l, 0] o Jls (m=-79)!

m 3
ZZ (ml *MOnT[n, j-n]*aln, m-3+1])/(nl+ (3-n) )|
j=2 n=2
(*Calculate the momentsx)
R?
dl (2R +dl)
Print [”M2=" ;, M2 = Collect [Normal [Series [c [2]L/.L-outm/.Dsr->Dar/e

Print[”tR:", tR=c[l]*L/.Lsustm/. € » /7 S:i_mplify] ;

R? 3
/. €3+ ———o—, {dl, 0, 2}” /.Dar - Dsre,
dl (2R+dl)

{tm, u, Dmr, Dsr, kdw}, Factor] /. k-8B-> kp] =
Print["M3=" ;, M3 = Collect [Normal [Series [0[3] L/.Loutm/.Dsr-Dar/e
R? 3
e ——" (41, o0, 2}]] /.Dar »Dsre,
dl (2R +dl)
{tm, u, Dmr, Dsr, kdw}, Factor] /. k-0-> kp] ;
M2 x L

*
/.Latm=xu, u]]:
tR?

Print [”H:" , Collect [
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Appendix C. Numerical inverse Laplace transform

Program of numerical inverse Laplace transform consists of sev-
eral modules. Modules Basicdata, Basicdata 1 and Basicdata 2 are
used to input basic parameters, and the supplemental parameters
for two-site model and continuously distributed site model, respec-
tively. The basic parameters include column length, column radius,
mean linear velocity of fluid, diffusion coefficient, retention factor,
adsorption heat distribution parameters and so on. When pres-
sure correction, injection correction and extracolumn correction
are required, Py, tj; and o.x need to input.

Module Deriveddata is used to calculate all parameters needed
in the program from the basic parameters. Module Moment is used
to calculate the moments of elution curves and used to evaluate
the step size of Ap. Module Timeset is used to set the time value at
which the value of elution curve is to be calculated. Certainly, the
time and the step size can also be given other values, and can be
adjusted according to actual results. Module Pcor is used in pressure
correction, but needs much more time. Some times the working
precision needs to set higher value.

In Eq. (21), k&j is choosen as a basic parameter. But we would
rather want to calculate the elution curves from given k'. So we
rewrite Eq. (21) as

A = —Dsq@* — p(1 +B) (c1)
where B is

1 kkg . .

— for single-sites

Bp+kg &

kj{ kdej

1
B= E]Zp+kdj
k' /Ol’(Q)P(Q)

for multiple-sites (€2)

dQ for continuous-sites

Bg p+kg
in which
[ ¢(Q)
g= / o) @de (3)

P(Q) is denoted by fp[Q] in the code.

Module Elution is the main module. The whole pro-
gram is: Basicdata; (Basicdatal or Basicdata2); Deriveddata;
Moment;Timeset; Pcor; Elution.
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(xcalculate elution curvessx)
Elution := Module[{x} ;, ¥ =0; Print [Dynamic["completed: "], Dynamic[100 %],
Dynamic[" %"]]; (*find £, ., (w,p), i.e.fsx)

1
fs=mxRxvxy[r] /. DSolve[{Dsr* (y"[r] + =%y [r]) +Axy[r] =0,
15

Yv'[R+dl] == 0, -Dsr+y ' [R] == (1 - T*Rxv«y[R]) / (2*7“3)}, vIr],

r] [[1]] /. t >R // Simplify; («find f, . (w,p), i.e.fms)

TmTm

ym[z ] =y[x] /. DSolveHDmr* (y"[r] +%*y' [r]) + (Al—AZ*rz) *y[r] = 0},

vIrl, r] [[1]] /. C[1] » O;
fm=m*R*xv*ym[R] /. Solve[Dmr*ym'[R] == (L-mxR*v*ym[R]) / (2*x7*R),
C[2]111([[1]1] // simplify; (*construct fnt (w,p), i.e.fsmx)
fsm=(exfs+1-€) »fm; (»find w(p)+*)wl = Table[0, {20000}]; j =1
While[(o 2 Im[wl[[7]]] >Log[10.'25] /L) &3 < Length[wl], wini =Which[j <2
Ap* (1 +kp+ f3)
————
3%wl[[j-1]] +3*w1[[j]]]:

r3<3, =wl[[J=-1]]1+2%wl[[3]], True, wl[[]-2]] -

i *
*NIntegrate[L]:;pm:I /.po-L*xApx],
P+

If[type==3&&cQ>0,B=
Bxg

{Q, Omin, Qmax}”; If[Pin/Pout— 151074, Peor, wl[[j+1]] = w

L FindRoot[SetPrecisicn[(fsm -17/. {Al > -Dmaxw’+2xdixuson -p,

2xL+u*w 2 g .
B2 ", A->-Dsaxu?-px (1+B)} e p—»—niAp*j], 20],
R

{w, wini} , WorkingPrecision » 20, MaxIterations - 1000]] ;x=0.97%

Im[w1[[j]]1]/ (Log[10.72%] /1) ; j++] P If[Im[wl[[3]]1] >0, 3=3-1];
wl = Take[wl, j]; pTab = Table[-1 (jj-1) *Ap, {jj, 1, j}]; (+find the Laplace

-A+wl *L cexl apTab2/2 .
;

transform of peak profile,flx)fl=e *fin[pTab] xe

(xcalculate peak profile, ftx)
A i
ft = Table[{trrab{ [3311, — #Re [£1.ePTebstTabll33]]
T
- 0.5]}, {13, 1, Length[tTab] }] ;Xx=1.; (xprint peak profilesx)

ListLinePlot [ft, PlotRange -» All, AxesOrigin - {0, 0}, InterpolationOrder - 2]] ;

(*input basic parametersx)

Basicdata :=Module[{}, type =1; L = 20 10% (xcm#) ; Dm = 0.1 (xcm? /sx) ;
u=50.0(*cm/s%); R=0.01(%xcm«);e€=0.6;61=0.2; v =400x10° (xcm/s%) ;
kp=2;kd=10%(4«s"4); Pin=1.0; 0ex = 0.2 (*s°) ; tin= 0. («tin=t,, /t ) ,-],-
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(xinput supplemental parameters for two-site casex)
Basicdatal := Module[{} , type=2;kpl =2; kp2=20; kdl = 10%; kd2=0.1; P2 = 0.06] ;

Basicdata?2 := Module[{} ;, type = 3; Reconst =1.987 x1073 (*gas constant,kcal/Kx) ;

T=293(*xK=*);Q1l=4.0(xkcalx);Q2=20.0(xkcals);Qp="7(xkcalx);
0Q = 100.0 (xkcal?x) ; t0 =10.713 (xsx) ; (xset a' (Q),i.e.ap[Q] in the codex)

ap[Q_ ] :=1; (xset the distribution function of adsorption heat P(Q),

i.e. fp[Q] in the codex)
_(2-0p)2

£p[0 ] :=Piecewise[{{0, 0<ol||2> 02}, {e 2:007  0150% Qz}}] ;] ;

(x*calculate the derived parametersx)
Deriveddata := Module[{j} , If[! NumericQ[tin], tin = 0] ; If[! NumericQ[ocex],
cex = 0] ; If[! NumericQ[Pin], Pin=1]; Pout =1; Dmr :=Dm; Dma :=Dm;

Dsr :=Dm/3;Dsa :=Dm/3; B=561* (81+2)xe;dl=R=*x461; Which[type ==1,

kp x kd . : 20
;kl=p;kdw[j ] :=kd”’; kdl=10."", type==2, P1=1-P2;

" B (p+kd)
1 kpl *kdl xP1 kp2 x kd2 « P2
( + ];k1=ﬁ+kp1*Pl;

kp=kpl*Pl +kp2*P2;B= —
P P P B p + kdl p + kd2
kdw[7_ ] :=kp/ (kpl« (1-P2) /kdl? + kp2 » P2 /kd27), type == 3, Clear[kd] ;
Q
kd := t0™! x @ RoonstaT ; If[oQ >0, Omin =Max[Ql, Qp-10#*0Q] ; Qmax = Min[Q2,
Qp+10x0Q]; g = NIntegrate[fp[Q] xap[Q] /kd, {Q, Omin, Omax}]; kdw[j ] :=
kp * kd

NIntegrate|fp[Q] * Q kdf’+1, Q, Omin, Qmax}|, Q= Qp;g= :
g/ grate[fp[Q] *xap[Q] / { }] B i

Pin? - Poutz) * Z

’

kdw[7 ] :=kdj;]] ; If[Pin/Pout-1> 1074, P[z_] := 4/ Pin? -
L
Pout Pout
u0 =u; Dm0 =Dm; Clear[u, Dm] ; u := ul * ; Dm := Dm0 * ;nz =40
P[z] P[z]

(*nz:the column is devided
into nz section,nz must be a even numberx); Az =L/nz;
w2 = Table[0, {20000}, {nz+1}]; w0 = Table[Which[]jj==1|]| J])==nz+1,

1, EvenQ[33], 4, 0ddQ[3j]] && 1 < Jj <nz, 2], {33, 1, l'12+1]‘]] 7

(#set the Laplace
transform of inject functj_on,fin(p) ,denoted by fin[p]x*)

1- e—p*tin*tm
fin[p ] := P:i_ecewise[{{l, tin==0 || p== 0}, {—, tin> 0&& p # 0}}];
- p*xtinxtm

SetAttributes[fin, Listable] ;] ;
(*set the time valuesx)
Timeset := Module[{]]j, J}, tTab = Select[Union[Table[t, {t, tR-10x o,
tR-2x0, o/3}], Table[t, {t, tR-2%0, tR+2%x0, 0 /10}],
Table[t, {t, tR+2*0, tR+10%0, 0/ 3}]], tm<s # <tR+10x 0 &];

If [NumericQ[n] &&n < 20, tTab = Union[tTab, Table[t, {t, tR1 -4 %01,
tR1+4%0l, 01 /3.1}], Table[t, {t, tR1 -2%0l, tR1+2%0l, 01 /10.1}],

Table[t, {t, tR1-ol/4, tR1+0l/4, 01/20}]]]; 77 = Length[tTab]; j =1;
While[j < jj, If[tTab[[j+1]] -tTab[[j]] < If [NumericQ[ol], ol /40, o/40],

tTab = Delete[tTab, j+1]; jj-=1, J+=1]:]1:1"
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(xcalculate the momentsx)

Moment := Module [{02

, ©3, c21}, tm = NIntegrate[l/u, {z, 0, L}]; Which[type==1,
n=tmxkpxkd, type==2, n=tmxkp2*xP2xkd2;];k=kp+B;tR=(1L+k+tin/2) tm;

k% x Rxdl

2% (1+k)2 % (Dma+ BxDsa) (1+6k+11k?) «R? 2 xkp
c2 = + + + /u:
3xexDsr kdw[1l]

u? 24 % Dmr

1/2 .

o= (cex?+ (tinxtm)? /12 + NIntegrate[c2 , {z, 0, L}])""*;

If[NumericQ[n] &&n <20, tR1 = (1 +kl+tin /2) xtm;

k12 xRxdl

2

- [2* (1+k1)2 + (Dma+ B *Dsa) (1 +6#k1l+114k1?) «R?
cz = +

u

24 % Dmr

+ +
3xe %xDsr

2% (k1-p3
;]/u; ol = (0ex2 + (tin*tm)z/12 +NIntegrate[c21 , {z, O,
kd1l

L}])“z:];

+o— %

u u4 u2

2xkx (1+k) *Rxdl*x ((1+2%k) x3 xDsa +k xDma)
+

1[12*(1+k)3*(Dma+ﬁ*Dsa)2 1 [12*(1+k)*kp*(Dma+f3*Dsa)
c3 = +

kdw [1]

* (1 +k) *R% %

€ xDsr

2 % Dmr

((2 +10*k+11*k2)*ﬁ * Dsa + (1+5*k+7*k2) *Dma)]+

(3+37+k+165%k? +251 % k%) *R* k24 (3+114k) *R3%dl  2k3 »d1?
+ + +
960 % Dmr?2 24 x€ xDsr « Dmr 5% (¢ %Dsa)?
(3+11xk) *Rzikp 2xkxkpxRxdl 6 x kp
+ ;
4 % kdw([1] *Dmr kdw[l] *e *Dsr kdw[2]

M3 = NIntegrate[c3, {z, 0, L}]’ skew=M3/03;Ap=2*Jr/ (tR+ 11 0) ;]:

(¥make presure corrections)

Apx (1L+kp +3)

Poor :=Module[{jj}, Do[z = (33 -1) % Az; wini:Wh:i.ch[j R ) AN

u

3<3, -w2[[J-1, 3311 +2*w2[[], 13]1], True, w2[[j-2, J3]] -3 *w2[[j-1,
3911 + 3% w2[[J, jj]]]; w2[[§+1, 39]] =w /- FindRoot[SetPrecision[

(fsm—l /- {Al—;—Dma*w2+2*J'1* uxw-p, A2 5

2xN*Uxw 2
, A ->-Dsaxw” -
R2

px(1+ B)} /. po-LxApx] ], 40], {0, wini}, WorkingPrecision - 40,

MaxIterations - 1000] (#;Print["3j=",33]1+*), {33, 1, nz + 1}];

WI[[§+1]] =w0.w2[[J+1]] /(3*nz);];
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