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a b s t r a c t

A set of accurate expressions of elution-curve moments are derived from the moments of residence time
and displacement in a step based on probability theory. Then the problems about residence time and
displacement in a step of a solute molecule in the porous layer of capillary columns and in the moving
mobile phase are described by a set of mass-balance equations respectively. The set of equations are
solved in Fourier–Laplace domain, and the characteristic functions of residence time of a step, as well
as the moments, are obtained by means of computing software Mathematica. At last, using numerical
inverse Laplace transform, the elution curves for various conditions are calculated. In the case of large
apillary
dsorption
oment

etention time
lution curve
orous layer

desorption constant the results entirely coincide with those of mass-balance-equation theory and in the
case of small desorption constant they are equivalent to those of stochastic theory.

© 2011 Elsevier B.V. All rights reserved.
athematica

. Introduction

Because of the extreme complexity of chromatographic pro-
esses, it is difficult to obtain an accurate elution curve by pure
heoretical calculation. Giddings and Eyring [1,2] gave an analytical
xpression of elution curves for pure-rate-controlling adsorption
hromatography. However, in most cases, diffusions cannot be
gnored. Cavazzini, Felinger and Dondi et al. [3–6] used character-
stic function theory (CF theory) to obtain an expression containing
xial diffusions in mobile phases in frequency domain, then to give
he elution curves in time domain by numerical inversion. In the

odel of Cavazzini et al., the diffusions in stationary phases and
he lateral diffusions in mobile phases are not considered. This is
orrect for slow-desorption processes, because in these processes
iffusions do not play a major role. In most cases, elution curves can
e approached by Cram–Charlier series [7] or Edgeworth–Cramer
eries [8,9], or simply by Gaussian distribution. In this way calculat-
ng an elution curve is reduced to calculating its retention time and

oments. However, there have not been general moment expres-

ions suitable for various desorption constants. Moreover while
he skew of elution curves exceeds 1 much, they are hard to be
xpanded in Cram–Charlier series or similar series at all.

∗ Corresponding author. Tel.: +86 816 2486230.
E-mail address: chen yinliang@live.cn

021-9673/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.04.072
We have presented a new stochastic theory based on mass bal-
ance principle, in which the lateral diffusions are involved [10], and
used in linear capillary chromatography with uniform stationary
phases and with multiple-site nonporous layer stationary phases
[11,12]. But the case of porous layers is much more complex. In this
paper we intend to think over all the factors which affect the linear
capillary adsorption chromatography with porous layers, including
the desorption rates and both the axial and the lateral diffusions
in stationary phases and mobile phases, as well as the structure
of stationary phases, the pressure drop in mobile phases and so
on. Starting from a series of basic parameters such as the column
parameters (the column length, the column radius, the thickness of
porous layer, the porosity and the specific surface area), the operat-
ing conditions (the linear flow rate, the time distribution of sample
injection, the gas pressure drop along the column) and the physico-
chemical parameters of solutes (the desorption rate constants, the
distribution constants, the diffusion coefficients), we calculate the
elution curves and their moments, and compare them with those in
literature. However, in this paper we will still limit the study only
in the capillary columns, not concern the more complex packed
columns.
2. General Laplace transform of elution curves

According to the random walk model [13], a solute molecule
in a column can be imagined to move in the way of

dx.doi.org/10.1016/j.chroma.2011.04.072
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:chen_yinliang@live.cn
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oving–adsorbing–moving alternately progressing and to go from
he inlet to the outlet step by step. The processes can be expressed
y following formula [10–12]:

�c =
n∑

j=1

�j

n∑
j=1

�j ≤ L <

n+1∑
j=1

�j

(1)

here n is the number of steps for a molecule to pass through a
olumn, �c represents the total time for a molecule to spend in the
olumn, �j and �j are the residence time and displacement in the
th step respectively. Obviously, n, �c, �j and �j are all random. The
econd formula in Eq. (1) represents the condition that a molecule
eaves the column. Denote

∑n
j=1�j and

∑n
j=1�j of given n by � ′

n

nd �′
n respectively, and denote the probability density function

PDF) of (�′
n, � ′

n) by f�′
n�′

n
(z, t) and the PDF of �n+1 by fn(z). Because

f independence of �n+1 and (�′
n, � ′

n) in linear chromatography,
here is

n(� ′
n ≤ t, �′

n ≤ L < �′
n + �n+1)

=
∫ t

0

(∫
z′≤L<z′+z′′

f�′
n�′

n
(z′, t′)f�(z′′)dz′dz′′

)
dt′

=
∫ t

0

∫ L

−∞
f�′

n�′
n
(z′, t′)dz′dt′

∫ ∞

L−z′
f�(z′′)dz′′ (2)

here Pn(� ′
n ≤ t, �′

n ≤ L < �′
n + �n+1) represents the probability of

′
n ≤ t, �′

n ≤ L and �′
n + �n+1 > L. Let f��(z, t) be the PDF of the dis-

lacement and residence time in an arbitrary step and f̃��(ω, p) be
ts Fourier–Laplace transform. Generally, we add a random variable
o the subscript of a function to indicate that the function is a PDF of
he variable and add a wave above the function symbol to represent
ts Laplace or Fourier–Laplace transform.

�̃�(ω, p) =
∫ ∞

0

∫ ∞

−∞
f��(z, t)eiωz−ptdzdt (3)

here i is the imaginary unit. Then we have

�̃′
n�′

n
(ω, p) = (f̃��(ω, p))

n
(4)

The PDF of � ′
n is given by

�′
n
(t) = d

dt
Pn(� ′

n ≤ t, �′
n ≤ L < �′

n + �n+1)

=
∫ L

−∞
f�′

n�′
n
(z′, t)dz′

∫ ∞

L−z′
f�(z′′)dz′′ (5)

Making Fourier–Laplace transform of f�′
n
(t) with respect to L and

, we have

�′
n
(ω, p) =

∫ ∞

0

∫ ∞

−∞
f�′

n
(t)eiωL−ptdLdt = g(ω)(̃f �(ω, p))n (6)

here

(ω) = 1
iω

∫ ∞

0

f�(z′′)(eiωz′′ − 1)dz′′ (7)

The practical residence time should include all possible steps,

o its PDF should be

�c (t) =
∞∑

n=0

f�′
n
(t) (8)
18 (2011) 4009–4024

The function of f�c (t) contains the variable of L. Its
Fourier–Laplace transform with respect to L and t is

f�c (ω, p) =
∫ ∞

0

∫ ∞

−∞
f�c (t)eiωz−ptdzdt =

∞∑
n=0

f̃�′
n
(ω, p) = g(ω)

1 − f̃��(ω, p)
(9)

The Laplace transform of f�c (t) with respect to t can be given by

inverse transform of f̃�c (ω, p) with respect to ω:

f̃�c (p) = 1
2�

∫ ∞

−∞

g(ω)

1 − f̃��(ω, p)
e−iωLdω (10)

The integrand of Eq. (10) has a first pole at

ω = ω(p) (11)

which is determined by

f��(ω, p) = 1 (12)

Using the residue theorem, the integral of Eq. (10) is calculated
approximately to be

f̃�c (p) = e−iω(p)L (13)

Here we omit a factor related to the residue of g(ω)/(1 −
f̃��(ω, p)) at ω = ω(p), for not too short columns the factor has no
influence on results. So far, we obtain the Laplace transform of
elution curves without any additional conditions.

3. Residence time and displacement in a step

A step defined in this paper contains two parts: corresponding
to the static zone and to the moving zone respectively. Let (�s, �s)
be the displacement and the residence time in the static zone per
step, (�m, �m) be the corresponding ones in the mobile zone, we
have{

� = �s + �m

� = �s + �m
(14)

Movement of solute molecules in static zones includes two
parts: diffusion in porous layers and adsorption–desorption on
solid surfaces. The corresponding displacements and residence
times are denoted by (�s1, �s1) and (�s2, �s2) respectively. Obvi-
ously all the (�s1, �s1), (�s2, �s2) and (�m, �m) are random and
characterized by their PDFs. In our model the general diffusion-
drift equations are used to determine the PDFs [11,12]. In the case
of porous layers, the diffusion in pores can be approached by the
diffusion in homogeneous media, see appendix A. Thus taking into
account the adsorption–desorption on solid surfaces, the mass bal-
ance equations of solute molecules in static zones can be simplified
as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
= Dsr

(
∂2C

∂r2
+ 1

r

∂C

∂r

)
+ Dsa

∂2C

∂z2
+ εs

∑
j

(kdjCsj − k′
ajC)

∂Csj

∂t
= −kdjCsj + k′

ajC

C(r, z, t )
∣∣
t=0

= Csj(r, z, t )
∣∣
t=0

= 0

∂C

∂r

∣∣∣∣
r=R+dl

= 0

−Dsr
∂C(r, z, t)

∂r

∣∣∣∣ = ı(t)ı(z)
2�R

− v
2

C(R, z, t)

(15)
r=R

where C(r, z, t) represents the concentration of solute molecules
in pores, Csj(r, z, t) the amount adsorbed by the site of type j per
area of solid surfaces, C and Csj are their abbreviation respectively,
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Fig. 1. Schematic of capillary columns with porous layers. (A) a solute m

sa the axial equivalent diffusion coefficient in porous media, Dsr

he corresponding radial equivalent diffusion coefficient, z the axial
oordinate of the capillary column, r the radial coordinate, t time, R
he inner radius of the column, dl the thickness of the porous layer,
s the surface area occupied by per unit volume of pores, kdj the
esorption rate constant of site j, k′

aj the adsorption reaction rate
onstant, ı(z) and ı(t) are Dirac-ı function, v the mean velocity of
olecules. The last equation in Eq. (15) means that at t = 0 and z = 0

here is a unit amount of solute molecules entering the porous layer,
nd at t > 0 at z there is an outgoing molecular flow with intensity
f vC(R, z, t)/2. Since the in-coming molecules are supposed to be
ne unit amount and to concentrate at t = 0 and z = 0, 2�R vC(R, z,
)/2 is equal to the PDF of the residence time �s1 and displacement
s1 of a molecule after entering pores, i.e.

�s1�s1 (z, t) = �RvC(R, z, t) (16)

Making Fourier–Laplace transform, we have

pC̃ = Dsr

(
∂2C̃

∂r2
+ 1

r

∂C̃

∂r

)
− Dsaω2C̃) + εs

∑
j

(kdjC̃sj − k′
ajC̃)

pC̃sj = −kdjC̃sj + k′
aj

C̃ j = 1, 2, · · ·
∂C̃

∂r

∣∣∣∣
r=R+dl

= 0

−Dsr
∂C̃

∂r

∣∣∣∣
r=R

= 1
2�R

− v
2

C̃(R, ω, p)

(17)

here

˜
sj =
∫ ∞

0

∫ ∞

−∞
Csj(r, z, t)eiωz−ptdzdt (18)

˜ = C̃(r, ω, p) =
∫ ∞

0

∫ ∞

−∞
C(r, z, t)eiωz−ptdzdt (19)

Eliminating C̃sj from Eq. (17), it gives

Dsr

(
∂2C̃

∂r2
+ 1

r

∂C̃

∂r

)
+ AC̃ = 0

∂C̃

∂r

∣∣∣∣
r=R+dl

= 0

−Dsr
∂C̃

∂r

∣∣∣∣
r=R

= 1
2�R

− v
2

C̃(R, ω, p)

(20)

here
= −Dsaω2 − p

⎛⎝εs

∑
j

k′
aj

p + kdj
+ 1

⎞⎠ (21)
le entering the pores. (B) a solute molecule hitting the outside surface.

From this the transform of f�s1�s1 (z, t) is given as follows

f̃�s1�s1 (ω, p) =
∫ ∞

0

∫ ∞

−∞
f�s1�s1 (z, t)eiωz−ptdzdt = �RvC̃(R, ω, p) (22)

When a group of solute molecules crosses the interface of the
two zones from the moving one, only a portion equal to the porosity
ε can come into the pores. And the rest of 1 − ε directly hit the out
surface, see Fig. 1. The PDF of the residence time of direct hitting
has been given by Ref. [11]. However the residence time from direct
hitting is much less than that from coming into pores and reason-
ably ignored. In this way the PDF of the displacement and residence
time in the static zone in an arbitrary step can be written as

f�s�s (z, t) = εf�s1�s1 (z, t) + (1 − ε)ı(t)ı(z) (23)

f̃�s�s (ω, p) = εf̃�s1�s1 (ω, p) + (1 − ε) (24)

Movement of solute molecules in the moving zone includes the
diffusion and drift. From this the corresponding mass balance equa-
tions are obtained as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂C

∂t
= Dmr

(
∂2C

∂r2
+ 1

r

∂C

∂r

)
+ Dma

∂2C

∂z2
− w(r)

∂C

∂z

C(r, z, 0) = 0

−Dmr
∂C

∂r

∣∣∣∣
r=R

= − 1
2�R

ı(z)ı(t) + 1
2

vC(R, z, t)

(25)

where C(r, z, t) is the concentration of solute molecules in the mov-
ing zone, C is the abbreviation, Dma and Dmr the axial and radial
diffusion coefficients in the mobile phase respectively, w(r) the lin-
ear flow rate at r, u the mean linear flow rate. In the case of laminar
flow, there is

w(r) = 2u

R2
(R2 − r2) (26)

Making Fourier–Laplace transform of Eq. (25), we have⎧⎪⎪⎨⎪⎪⎩
Dmr

(
d2C̃

dr2
+ 1

r

dC̃

dr

)
+ (A1 − A2r2))C̃ = 0

−Dmr
dC̃

dr

∣∣∣∣
r=R

= − 1
2�R

+ v
2

C̃(R, ω, p)
(27)

where{
A1 = −Dmaω2 + 2iuω − p

A2 = 2iuω

R2

(28)

The PDF and its transform of the displacement and residence

time in the moving zone in an arbitrary step are derived from C and
C̃ as follows

f�m�m (z, t) = �RvC(R, z, t) (29)
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�̃m�m (ω, p) = �RvC̃(R, ω, p) (30)

ccording to the characteristic function theory of probability, the
haracteristic function of the sum of independent random variables
s equal to the product of the characteristic function of each one. So

e have

�̃�(ω, p) = f̃�s�s (ω, p)f̃�m�m (ω, p) (31)

. Moments of elution curves

Substituting Eq. (31) into Eq. (12) and finding ω = ω(p), then sub-
tituting ω(p) into Eq. (13), we finally obtain the Laplace transform
f the peak profiles. The nth cumulant of the peak profiles can be
erived from the Laplace transform as follows [7,10,14]:

′
n = (−1)n ∂n

∂pn
ln(f̃�c (p))

∣∣
p=0

= Lcn (32)

here M′
1 = tR, M′

2 = M2 = �2
�c

, M′
3 = M3, etc., tR is the retention

ime, M2 or �2
�c

are the second central moment or variance of elu-
ion curves, M3 is the third central moment. All the work can be
ompleted by Mathematica, see Appendix B. The results are as fol-
ows

R = (1 + k)tm (33)

2

=
(

2(1 + k)2(Dma + ˇDsa)
u2

+ (1 + 6k + 11k2)R2

24Dmr
+ k2Rdl

3εDsr
+ 2k′

k̃d

)
× tm (34)

3 =
(

12(1 + k)3(Dma + ˇDsa)2

u4
+ 1 + k

u2

(
2kRdl(kDma + (1 + 2k)ˇDsa)

εDsr
+ R2((1 + 5

+ (3 + 37k + 165k2 + 251k3)R4

960D2
mr

+ (3 + 11k)R2

4Dmr

(
k2Rdl

6εDsr
+ k′

k̃d

)
+

k3R2d2
l

5ε2D2
sr

+ 2k

εD

= 2(Dma + ˇDsa)
u

+ u

(1 + k)2

(
(1 + 6k + 11k2)R2

24Dmr
+ k2Rdl

3εDsr
+ 2k′

k̃d

)
(36)

here tm is the time for the fluid to pass through the column, H
he theoretical plate height, ˇ the ratio of the pore volume in the
tatic zone to that in the moving zone, k′ the ratio of solute amount
dsorbed by solid surfaces in the static zone to that in the moving
one, and we call it the adjusted retention factor, k the ratio of solute
mount in the static zone to that in the moving zone and called as

he retention factor, k̃i
d

special average of ki
dj

, they are calculated as
ollows

ˇ = dl

R2
(2R + dl)ε

k′ = ˇεsK
k = k′ + ˇ

k̃i
d

=

⎛⎝ 1
K

∑
j

Kj

ki
dj

⎞⎠−1 (37)

here Kj is the distribution constant on site j, K is the total distri-
ution constant.

k′

Kj = aj

kdj

K =
∑

j

Kj

(38)
18 (2011) 4009–4024

k2)Dma + (2 + 10k + 11k2)ˇDsa)
2Dmr

+ 12k′(Dma + ˇDsa)

k̃d

)
6k′

k̃2
d

)
tm (35)

5. Elution curves

In principle the expression of elution curves can be obtained by
inverse transform of Eq. (13) with respect to p. However, only in the
simplest case, i.e. the all diffusions can be ignored and the surface is
of single-site, we can obtain the analytical expression. In this case,
we have

f̃��(ω, p) = 1 + 1
v

(
R(2A1 − A2R2)

2
+ εAdl(2R + dl)

R

)
(39)

where A, A1 and A2 are determined by Eqs. (21) and (28) with Dsa = 0
and Dma = 0. In this way, the Laplace transform is

f̃�c (p) = e−k′kdtm−ptm+((k′k2
d

tm)/(p+kd)) (40)

Making inverse transformation of Eq. (40), we have

f (t) = e−n−kd (t−t′m)

(
kd

√
k′tm√

t − t′
m

I1(2kd

√
(tR − t′

m)(t − t′
m)) + ı(t − t′

m)

)
(41)

where n = k′kdtm represents the mean times of solute molecules
being adsorbed by sites during their passage through the col-
umn, t′

m = (1 + ˇ)tm the mean time for unretained material to pass
through the column, I1(x) the modified Bessel function of the first
kind. Except for the term of ı(t − t′), Eq. (41) is identical to the
formula derived by Giddings and Eyring completely [1].

If ignoring merely the radial diffusions, similarly to derivation
of Eq. (40), we can derive the Laplace transform of elution curves
as follows

f̃�c (p) = e
Nd(1−

√
1+(2p/Nd)(t′

m+n
∑

J
((paj�sj)/(1+p�sj)))

(42)

where Nd = Lu/(2Da), Da = Dma + ˇDsa, paj = k′
aj

/k′
a, k′

a =
∑

j

k′
aj

,

�sj = 1/kdj. After replacing the variable p by −iω, Eq. (42) becomes
the same as that of Ref. [5] formally, but here the Da contains the
axial diffusion in the static zone and the effects of multiple-sites
have been added.

Once taking into account the radial diffusions, we are not able
to obtain an analytical solution of ω from f̃��(ω, p) = 1, thereby
not able to give an accurate Laplace transform of elution curves,
instead we can give an approximate or numerical Laplace transform
only. No matter whether the radial diffusions can be ignored or not,
except for Eq. (41) we are not able to give an expression of elution
curves by inverse transform. For all cases a general method to obtain
the elution curves is the numerical calculation by following formula

f (tn) = 	p

�
Re

⎛⎝ jmax∑
j=1

e−iω(pj)L+pjtn + 0.5

⎞⎠ (43)

where 
p is real-number step size, pj = −i (j − 1) 
p, tn is the nth
set value of t for calculating f(t). The calculation of Eq. (43) can be
completed by Mathematica, see Appendix C.
6. Effect of pressure drop and extracolumn

There are many papers in the literature discussed the effects of
pressure drop and extracolumn on the second moment and the the-
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retical plate height [19–24]. For compressible fluid, the pressure
t z in a column can be expressed by

(z) =
√

P2
in

− (P2
in

− P2
out)z

L
(44)

The pressure drop will cause change of linear flow rate and
iffusion coefficient as follows:

(z) = uoutPout

P(z)
(45)

m(z) = Dout
Pout

P(z)
(46)

here Pout, uout and Dout denote the pressure, mean velocity and
iffusion coefficient at the outlet, Pin the inlet pressure, P(z), Dm(z)
nd u(z) are the pressure, mean velocity and diffusion coefficient
t z. In case the performance of columns varies with position z, the
oefficients cn in Eq. (B4) become functions of z, and instead of Eq.
B4) the moments need to calculate by integration:

′
n =
∫ L

0

cndz (47)

In order to calculate the elution curves with consideration of
olumn-performance change, we divide the column into many
hort pieces so that the performance in each piece keeps unchanged
nd Eq. (1) holds true. In this way, for the jth piece, we have

j�c (p) = e−iωj(p)
zj (48)

here ωj denotes the ω in piece j, 
zj is the piece length. For the
hole column, there is

�c (p) = e−i
∑

j
ωj(p)
zj = e

−i
∫ L

0
ω(p)dz = e−iω̄(p)L (49)

here

¯ (p) =
∫ L

0

ω(p)
L

dz (50)

There are many types of time distribution of sample injection
23]. Here we only take the following as an example:

in(t) =
{

1
tin

0 ≤ t ≤ tin

0 t > tin

(51)

here tin denotes the width of injection time. The Laplace transform
f fin(t) is

ĩn(p) = 1
ptin

(1 − e−ptin ) (52)

Suppose that the additional residence time from the extracol-
mn effects except the sample injection is of a Gaussian distribution
ith variance �2

ex, then the Laplace transform of elution curves
eeds to multiply by a factor of exp(�2

exp2/2).
With consideration of column-performance change, injection

unction and the other extracolumn factors, the equation of numer-
cal inverse transform, Eq. (43), needs to be replaced by

(tn) = 
p
Re

⎛⎝ jmax∑
f̃in(pj)e

(�2
exp2

j
/2)−iω̄(pj)L − 0.5

⎞⎠ (53)

�

j=1

. Discussion

The famous equation of theoretical plate height H for capillary
orous-layer partition chromatography derived by Golay [15] is
18 (2011) 4009–4024 4013

H = 2Dm

u
+ 1

24

(
1 + 6kG + 11k2

G

(1 + kG)2
+ 8 + 32kG

(1 + kG)2
˛2 + 8k2

G

(1 + kG)2

˛2
1

˛2

)
× R2u

Dm
+ k3

G

6(1 + kG)2

(1 + 2˛2)
F2K2

R2u

Dl
(54)

where kG denotes the retention factor defined in Golay’s equation,
which is slightly different from k in this paper, k = 2˛2 + (1 + 2˛2)kG,
˛1R represents the mean length of a tortuous path, ˛2 is equal to
the product of ε and ıl, where ıl = dl/R, F is the ratio of the total sur-
face area in the porous layer to the surface area of the moving zone.
Substantially, the sum of the second and third terms in Eq. (54) is
equal to (1 + 6k + 11k2)R2u/24(1 + k)2Dm, which can be proved if we
substitute k for kG and expand it in series of ˛2. Supposing the orien-
tation of the paths is isotropic, the mean value of ˛2

1R2 will approach

to 3 d2
l
. So the fourth term in Eq. (54), k2

G˛2
1R2u/3(1 + kG)2˛2Dm,

can be deduced to k2
Gd2

l
u/(1 + kG)2εDmı1. When ı1 � 1, kG and k

are nearly equal. Replacing kG by k and Dm/3 by Dsr, the fourth term
can further be deduced to k2Rdlu/3(1 + k)2εDsr. At last, according to
the definition of F and K, there is FK = kG(1 + 2a2)R/2dl. Substituting
the expressions of FK into the last term of Eq. (54) and considering
that kG ≈ k ≈ k′, this term can be simplified to 2k′d2

f
u/3(1 + k)2Dl .

In this way, the Golay equation of Eq. (54) can be rewritten in the
symbols of this paper as follows

H = 2Dm

u
+ u

(1 + k)2

(
1 + 6k + 11k2)R2

24Dm
+ k2Rdl

3εDsr
+

2k′d2
f

3Dl

)
(55)

Comparing Eq. (55) with Eq. (36), we find that all terms of Eq.
(55) except the last one are contained in Eq. (36). The exceptive term
is brought from the diffusions in the liquid films on solid surfaces,
and in this paper we only study the adsorption chromatography
in which there are no liquid films, so Eq. (36) does not have this
term. By the way, if to use the model of this paper in the partition
chromatography, this term appears at once. But the derivation is
complex and beyond the scope of this paper. Any way, Eq. (55) lacks
the terms corresponding to the axial diffusions in porous layer,
2ˇDsa/u, and the reaction rate term, 2k′u/(1 + k)2k̃d.

The moment expressions from CF method of stochastic theory,
rewritten by the symbols of this paper, are as follows:

M2 = tm

(
2 Dm(1 + k′)2

u2
+ 2k′

k̃d

)
(56)

M3 = tm

(
12D2

m(1 + k′)3

u4
+ 12Dmk′(1 + k′)

u2kd
+ 6k′

k̃2
d

)
(57)

Here we add the effects of multiple-sites in the results of Ref.
[5]. Compared with Eqs. (34) and (35), we find that Eqs. (56) and
(57) lack the terms related to the radial diffusions in the moving
zone and all diffusions in the static zone.

Letting dl → 0, the moment expressions of Eqs. (34)–(36)
become the same as the previous results of ours [11].

According to theory of gas adsorption [16], the number of
molecules striking a unit area of solid surface in unit time is vC/4,
where C represents the molar concentration near the surface. Sup-
pose that total active surface, i.e. the surface occupied by all active
sites, has a portion Pa in the total surface and the reflection coeffi-
cient on the site is ˛, in equilibrium we have

v(1 − ˛)Pa

4
C = kdCs (58)
where

kd = 1
�0

e−Q/(RT) (59)
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kdj = 1
�0

e−Qj/(RT) (65)
Fig. 2. The relationship of retention factors, adsorption heat and co

From Eqs. (58) and (59),

= Cs

C
= 1

4
v˛′�0e−Q/(RT) = k′

a

kd
(60)

here

′ = (1 − ˛)Pa (61)

′
a = 1

4
v˛′ (62)

Q is the molar adsorption heat, R the gas constant, T the
elvin temperature, �0 the oscillation time of adsorbed molecules,
0 ≈ 10−13s, ˛’ is the condensation coefficient. Substituting K into
q. (37), we have

′ = 1
4

v˛′ˇεs�0e−Q/(RT) = 1
4kd

v˛′ˇεs (63)

From above equation it can be seen that for constant ˛′, the
maller the kd, the larger the k′. In other words, the larger the Q, the
arger the k′.

Fig. 2 gives an intuitionistic numerical relationship of k′ and Q.
n Fig. 2, the two dashed level lines correspond to k′ = 1000 and
′ = 0.1, respectively. Generally, that k′ falls outside the two lines is
ot suitable for analysis. Hence when the Q is very large, the ˛′ must
e very small in order to make k′ falling inside the two lines. ˛′ may
ecrease, for example, by adding some inert surfaces to reduce Pa.
esides ˛′, the factors of ıl, ε, εs and v, etc. can also affect the value
f k′, especially the factor of εs can affects k′ by several orders of
agnitude.
Fig. 3 gives the relations of the theoretical plate height and the

esorption rate constant with given k′. In the figure three kinds of
urves, by CF method, i.e. from Eq. (56), Golay equation, i.e. from Eq.
55) with df = 0, and this paper, i.e. Eq. (36), are simultaneously plot-
ed. From the figure we can find that the relations from CF method
nd Golay equation are entirely different. CF method is suitable
or small kd, in which desorption rate is the controlling factor, and
olay equation is suitable for large kd, in which diffusion is the con-

rolling factor [17]. And the results of this paper coincide with that
rom CF method completely when kd is very small and coincide
ith that from Golay equation when kd is very large. This shows

hat the model of this paper is suitable for both cases of small kd and

arge kd, and combines the both effects of diffusions and desorptions
nto a united equation. From Fig. 3 it also seen that H calculated by
his paper and Golay equation decreases with increasing of Dm. But
he results by CF method are just the reverse. This is because that
ation coefficients. ı1 = 0.2, ε = 0.6, εs = 106/cm, v = 400 m/s, T = 293 K.

the radial diffusions are neglected here and under the given condi-
tions the effects of radial diffusions are lager than axial diffusions.
Fig. 3 also shows the relations of H and Q because Q and kd are of
one-to-one correspondence.

Skew is defined as

S = M3

M3/2
2

(64)

where S represents the skew. Fig. 4 shows the relations of skew
to adsorption heat and desorption rate constants for the single-
site model. From this figure it is seen that skew increases with
decreasing of kd and k′ when k′ is not extremely small, but sud-
denly becomes quite small when k′ is close to 0. This means that
skew increases first then decreases with k′ increasing from k′ = 0.
For small kd and small but not zero k′, skew becomes very large.
But for sufficiently large kd, in despite of the value of k′, the skew is
always small.

In the case of multiple-site, suppose the adsorption heat of site
j is Qj and the desorption rate constant is kdj, then
Fig. 3. The relation of H to Dm and kd . G means the curves are calculated by Golay
equation, CF by characteristic function of stochastic theory, the dots by this paper.
L = 20 m, R = 0.01 cm, u = 50 cm/s, k′ = 2, ˇ = 0.264.
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Fig. 6. Relation of skew to adsorption heat distribution. ˛′(Q) = constant for each
ig. 4. The relation of skew and adsorption heat for single-site. L = 20 m, R = 0.01 cm,
= 50 cm/s, Dm = 0.1 cm2/s, ıl = 0.2, ε = 0.6, εs = 106/cm, v = 400 m/s, T = 293 K.

From the principle of chemical equilibrium, we have

v(1 − ˛j)PaPj

4
C = kdjCsj (66)

From Eq. (66),

′
aj = 1

4
v(1 − ˛j)PaPj = 1

4
v˛′

jPj (67)

here Pj is the abundance of site j, equal to the ratio of surface area
ccupied by this site to that by all sites, ˛j is the reflection coefficient
n site j, ˛′

j
= (1 − ˛j)Pa is the condensation coefficient. Substitute

bove kdj and k′
aj

into Eqs. (37) and (38), then re-substituting the
esults into Eqs. (33)–(36) and (64), we can obtain the retention
actors, the retention time, the theoretical plate height and the
kew, etc. for different Qj. Introducing k′

j
into the expressions of

he moments,

′
j = 1

4
v˛′

jˇεs�0eQj/(RT) (68)

here k′
j

represents the adjusted retention factor of site j, we can
btain the moments for different k′

j
.

Fig. 5 gives the intuitionistic relations of skew to abundance P2
′ ′
n two-site case under different k 1 and k 2. From this figure it is

een that all curves of skew vs. P2 are similar, they all increase first
nd then decrease with increasing of P2 and reach a peak value at
small P2. For given kd2 the curves shift to the left integrally as k′

2

ig. 5. The relation of skew and abundance for two-site. k′
1 = 2, kd1 = 108/s. (a)

d2 = 0.01/s, (b) kd2 = 0.1/s, (c) kd2 = 1/s, (d) kd2 = 10/s, 1. k′
2 = 2, 2. k′

2 = 20, 3. k′
2 = 200.

he other parameters see Fig 4.
curve. Q1 = 4 kcal, Q2 = 20 kcal, 1. �Q = 0 kcal, 2. �Q = 0.1, 3. �Q = 0.2, 4. �Q = 0.3, 5.
�Q = 0.5, 6. �Q = 1, 7. �Q = 2, 8. �Q = 3, 9. �Q = 5, 10. �Q = 100, (a) k′ = 1, (b) k′ = 100.
The other parameters are same as in Fig 4.

increases. For given k′
2, as kd2 decreases, the peak values of skew-P2

curves increase and even get very large. These plots are analogous
to those of Ref. [4] qualitatively.

In the case of continuously distributed sites, ˛’ and kd are related

to the adsorption heat Q, and the calculation of K and k̃i
d

should be
replaced by integration:

K(Q ) = k′
a(Q )

kd(Q )
= v

4
�0eQ/(RT)˛′(Q )P(Q ) (69)

K = v
4

�0

∫
eQ/(RT)˛′(Q )P(Q )dQ (70)

k̃i
d

=
(

1
K

∫
K(Q )

ki
d
(Q )

P(Q )dQ

)−1

=
∫

˛′(Q )P(Q )/kd(Q )dQ∫
˛′(Q )P(Q )/ki+1

d
(Q )dQ

(71)

where ˛′(Q) denotes the condensation coefficient on the site with
adsorption heat of Q, P(Q)dQ represents the abundance of the site
with adsorption heat in (Q, Q + dQ),

˛′(Q ) = (1 − ˛(Q ))Pa (72)

where ˛(Q) is the reflection coefficient on the site with adsorp-
tion heat Q. In the case of continuous distribution, the relation of
elution-curve moments to adsorption heat is very complex. It is
not only related to adsorption heat distribution P(Q), but also to
˛′(Q). Fig. 6 gives the relations between skew and the parameters
of distribution under the conditions ˛′(Q) = const and

P(Q ) =
{

e
−(Q−Q ′)2/2�2

Q Q1 ≤ Q < Q2
0 Q < Q1 or Q ≥ Q2

(73)

In the figure, curves 1, 2 and 3 almost coincide completely
with each other. Curve 1 just corresponds to single-site case.
So above curves show that the surface with continuous dis-
tribution of �Q < 0.2 kcal can be considered as uniform. In the
region of �Q < 0.5 kcal skew monotonously increases with Q′.
When �Q is between 0.5 kcal and 3 kcal, skew increases first
and then decreases with increasing of Q′. When �Q reaches
a very large value, the adsorption heat distribution turns to
uniform, and skew becomes independent of Q′. For given
smaller Q′ skew varies sensitively with �Q, for example, at
Q′ = 7 kcal and k′ = 1, �Q = 0.5 kcal leads to skew = 0.0067, �Q = 2 kcal
leads to skew = 13.4 and �Q = 3 kcal leads to skew = 3.5. The

curves of different k′ are similar, but larger k′ gives smaller
skew.

Fig. 7 gives several elution curves of single-site model. From
this figure we find that curves 1, 2 and 3 are all split to two parts: a
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ig. 7. Elution curves for single-site model. 1. kd = 0.05/s, skew = 1.06, n = 4; 2. kd = 0
. kd = 1/s, skew = 0.24, n = 80; 6. kd = 10/s, skew = 0.075, n = 800; 7. kd = 100/s, skew
= 8 × 107. 10. L = 25 cm, u = 0.2 cm/s, Dm = 10−3 cm2/s, kd = 0.008/s, k′ = 4. For curves

harp peak, corresponding to unretained molecules, and a short fat
eak, corresponding to retained molecules. This phenomenon was
eviewed in ref. [18]. Note, the three unretained peaks are located
t the same position originally, for clarity we move curves 2 and
to right a bit. From curves 1–9, the corresponding kd increases

rom 0.05/s to 106/s. As kd increases, the unretained peaks become
maller and smaller and the retained peaks become higher and
igher, narrower and narrower, at last, for slightly large kd the

nretained peak disappears completely, leaving the retained peak
lone and for very large kd the retained peak becomes indepen-
ent of kd. Actually, an elution curve is split or not is controlled
ainly by the mean times of being adsorbed, which is denoted by

ig. 8. Elution curves for two-site model. The curves with dots are given by Eq. (55), the c
2 = 0.06, skew = 0.97, n = 4.8; (b) P2 = 0.001, skew = 7.3, n = 0.08; (c) P2 = 0.2, skew = 0.53, n
skew = 0.84, n = 6.4; 3. kd = 0.1/s, skew = 0.75, n = 8; 4. kd = 0.2/s, skew = 0.53, n = 16;
4, n = 8 × 103; 8. kd = 104/s, skew = 0.0072, n = 8 × 105; 9. kd = 106/s, skew = 0.0069,
′ = 2. The other parameters are same as Fig. 4.

n, n = k′kdtm. The probability that a molecule is never adsorbed dur-
ing the course of passing through the column can be calculated by
e−n. So for large n, the probability tends to 0 and the unretained
peak disappears. And for small n, the probability tends to 1 and the
retained peak disappears. Besides n, the splitting is also controlled
by the difference of position of the two peaks and by the width of
slow peak. From Fig. 4 it has been seen that when k′ and kd both
are small, the skew will be very large. But the large skew is only a

theoretical value calculated from whole elution curve, and in prac-
tice, in this case the n is very small, and the observed curve is an
unretained profile and has good symmetry with small skew. The
characteristic of elution curves for single-site model stated here

urves without dots are by CF method [4,5]. k′
1 = 2, k′

2 = 20, kd1 = 108/s, kd2 = 0.1/s. (a)
= 16. The other parameters are same as Fig. 4.
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ig. 9. Tailing caused by minor slow-site. k′
1 = 2, k′

2 = 20, kd1 = 108/s, the other
arameters see Fig. 4.

s similar to Ref. [4]. However, because of neglecting radial dif-
usions the unretained peak plotted by CF method will be higher
nd narrower. This can be shown by curves 10, the parameters of
hich are specially set as the same as Fig. 3 of Ref. [4]. The retained
eaks by CF method and this paper are not different because in
he case of small kd they are less affected by the parameters other
han kd.

Fig. 8 shows the varying of two-site elution curves with abun-
ance of site 2. The curves in Fig. 8 are calculated by two methods:
q. (42) with Dsa = 0, corresponding to CF method [3,5], and Eq. (43)
f this paper. The curves with dots are calculated by Eq. (43) and
he curves without dots are by CF method. In Fig. 8a, an elution
urve is split to two peaks: the first peak corresponds to the sites
ith large kd and is unretained by the sites with small kd, which
e can call a quick peak, and the second peak is retained by the
low-site, which can be called a slow peak. In Fig. 8b there are only
he quick peaks, and in Fig. 8c there are only the slow peaks. Sim-
larly to the single-site case, whether an elution curve is split or
ot is also determined mainly by n, here n = P2k′

2kd2tm and repre-

ig. 10. Elution curves for continuously distributed adsorption heat. ˛′(Q) = constant fo
Q = 0 kcal, skew = 0.0069; 2. �Q = 1, skew = 0.0069; 3. �Q = 1.5, skew = 0.26; 4. �Q = 1.8, s
Q = 100, skew = 2.03; 9. �Q = 100, k′ = 10, skew = 0.92; 10. �Q = 100, k′ = 100, skew = 0.29. T
18 (2011) 4009–4024 4017

sents the mean times of being adsorbed by the slow-sites. In Fig. 8a,
n = 4.8, the probability of unretained by slow-sites is 0.82%. i.e. the
area of the quick-site peak is 0.82% in the total area of the elu-
tion curve. Although the portion is small, the peak is very distinct
because it is very narrow. In Fig. 8b, n = 0.08, the portion of the
quick-site peak is 92.3%. Although the slow-site profile or tailing
has a portion still as much as 7.7%, it disappears completely because
it spreads too broadly. In Fig. 8c, n = 16, the portion of the quick-site
peak decreases to 10−7 and the whole elution curve is controlled
by slow-sites completely. By comparison of the results of the two
methods it can be found that the quick-site peaks calculated by this
paper are fatter and shorter than those by CF method, and the slow-
site peaks are not different. The reason for this is similar to that
for single-site case, i.e. in the CF method the radial diffusions are
neglected.

Fig. 9 further illustrates the influence of minor slow-sites on
elution curves. From this figure it is seen that a small amount of
slow-sites causes a long tailing. As the abundance of slow-sites
decreases the tailing descends also, but the decay rate of the tail-
ing is unchanged, basically equal to kd2. It is also seen that for very
small P2 and kd2, the tailing becomes very low, and the correspond-
ing skew becomes very large. However, the small tailing can be
observed only in semilog plot theoretically and in practice it may
be drowned by noise entirely.

Fig. 10 gives the curves with continuously distributed adsorp-
tion heat. From this figure we can see that the curve 2, whose �Q
is 1 kcal, is completely identical to the curve with �Q = 0 kcal, i.e.
the case of single-sites. This means that the elution curves with
continuously distributed adsorption heat have no significant dif-
ference from that of single-sites provided �Q is not too large. From
curve 2 to curve 8, �Q is from 0 kcal to 100 kcal, the peak symmetry
becomes worse and worse. It is interesting that in the figure curve 4
has the maximum skew of 13.2, but it does not look the worst sym-
is 2, not the biggest. Comparing curves 8, 9 and 10, we find that
under the condition of �Q = 100 kcal, with k′ increasing the skew
decreases and the symmetry increases.

r each curve. Q1 = 4 kcal, Q2 = 20 kcal, Q′ = 7 kcal, k′ = 2 except curves 9 and 10; 1.
kew = 13.2; 5. �Q = 2, skew = 9.43; 6. �Q = 3, skew = 2.49; 7. �Q = 5, skew = 2.11; 8.
he other parameters see Fig. 4.
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ig. 11. The effect of pressure change. uout = 50 cm/s; Dout = 0.1 cm /s; Pout = 1 atm,
. Pin = 1.2 atm, R = 0.025 cm, tm = 44s; 2. Pin = 2, R = 0.01, tm = 62; 3. Pin = 7.7, R = 0.005,

m = 260. The other parameters see Fig. 4.

Fig. 11 shows the effect of pressure drop on elution curves in
as adsorption chromatography. In the figure, the label of no pres-
ure correction means the linear velocity of fluid and the diffusion
oefficient both correspond to the average pressure P̄ = 2(1 + Pin +
2
in

)/3(1 + Pin), without regard to their changing with position. In
he figure, curve 1 actually contains two coincided curves: one has
een corrected for pressure and the other has not. This means that
hen Pin ≤ 1.2 atm, the pressure correction is not necessary. But
hen Pin ≥ 2, the peak becomes shorter and fatter after pressure
orrection, see curves 2 and 3. It is noticed that curve 2 is narrower
han curve 1. This is because the column radius of curve 2 is less
han that of curve 1, which reduces the contribution to peak width

ig. 12. Effect of injection on elution curves. The calculation conditions are the same
s curve 9 of Fig. 7.

Fig. A1. Schematic of a pore orientation.
18 (2011) 4009–4024

of radial diffusions. But the radius of curve 2 is less than that of
curve 3 also, this time the curve 2 is broader than curve 3. This is
because that the time for fluid to pass through the column of curve
3 is extended greatly and the axial diffusions take effect.

Fig. 12 shows the effect of injection time on elution curves.
When the variance from inject time reaches a comparable value
with that from Eq. (34), the effect starts to appear. In this figure we
can see that the curves with tin/tm = 0.1% and tin/tm = 0 are in com-
plete agreement, indicating that injection has no effect on elution
curves in this case. Injection time less than or equal to 0.1% of tm cor-
responds to length of sample tube less than or equal to about 0.1% of
column length. This means, for example, for a column of 20 m long
the sample tube up to 2 cm long does not affect the elution curves.
When the injection time reaches 1% of tm, the peak of elution curves
is slightly shorter, showing that the injection has a slight effect on
the curves. When the injection time exceeds 5% of tm, elution curves
are severely affected and the peaks become fatheaded.

8. Conclusions

In this paper, a set of mass balance equations with special
boundary conditions are used to calculate the joint probability
density function and the moments of the residence time and the
displacement in porous layers in a step, i.e. the step moments and
step PDF for the static zone. Again, a similar method is used to
obtain the step moments and step PDF for the moving zone. Then
probability theory and numerical inversion are used to derive the
retention time, the height equivalent to a theoretical plate, the skew
and the elution curves from the step moments and the step PDF.
By compared with the classic mass balance equation theory and
the stochastic theory, the results from this paper are in agreement
with those from the two theories in the regions where they hold
true separately. From this we can conclude that using mass balance
equations to describe the probability distribution of residence time
is effective and rigorous and the model of this paper is more general.

The relationship of elution curves and their moments with the
step PDF and the step moments is derived only based on prob-
ability theory without referring any practical chromatographic
models, and it is universal. Therefore as long as we present a set
of correct mass balance equations to describe the step probability
distributions, we can obtain the elution curves and their moments
for any types of linear capillary chromatography in similar way to
this paper.
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Appendix A. Approximate diffusion equation in porous
media

Suppose there is a pore of an included angle � with the radial
axis r, see Fig. A1. Set C the solute molecular concentration in pores
at r at t, S′ the cross section area of the pore, S the section area of
the pore cut by the interface of r = r1 and dC/dr the concentration
gradient along r direction, then the concentration gradient along
the pore axis is dC/dl = cos(�)dC/dr. Since S′ = S cos(�), we have

j = J

S
= −Dm

S′

S

dC

dl
= −Dm cos2(�)

dC

dr
(A1)
where J is the total amount of solute molecules diffusing outwards
at the interface r1 per unit time through the pore l, j is the amount
per unit section area of pores per unit time, Dm is the diffusion
coefficient of the solute molecules in the mobile media. Suppose
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he orientation and cross section area of pores are independent of
ach other, and the orientations are homogeneously distributed,
fter averaging over all pores we have

= Dmcos2(�)
dC

dr
= Dm

3
dC

dr
(A2)

Let

= Dm

3
(A3)

We have

= −D
dC

dr
(A4)

here D is an equivalent diffusion coefficient. From this it follows
hat

∂C

∂t
= D
C (A5)

Eq. (A5) shows that the diffusion equation in the porous media
an be equivalent to the equation in the uniform media, however
he diffusion coefficient is an equivalent one.

ppendix B. Derivation of moments

The nth cumulant of an elution curve can be derived from its
aplace transform by Eq. (32). However, f̃�c (p) is a complicated
mplicit function of p and its higher-order derivatives are very dif-
cult to calculate even by computing software. Therefore, in order
o obtain the moments expediently we would rather first expand
�s1�s1 (ω, p) in series of dl and f̃�m�m (ω, p) in series of R, then calculate
he elution-curve moments by Eq. (32). In order to calculate accu-
ate moments up to order 3, it is necessary to expand f̃�s1�s1 (ω, p)
n 5th order series of dl and f̃�m�m (ω, p) in 11th order series of R.

From Eqs. (3) and (12), we have
∞

n=0

∞∑
m=0

M0
nm(�, �)

(iω)n

n!
(−p)m

m!
= 1 (B1)

here M0
n,m(�, �) denotes the origin moments of nth order for �

nd mth order for �. M0
n,m(�, �) is given by

0
n,m(�, �) = i−n(−1)m ∂n+mf̃��(ω, p)

∂ωn∂mp

∣∣∣∣
ω=0,p=0

(B2)

Expanding ω in series of p as follows

= i

∞∑
n=1

cn

n!
(−p)n (B3)

Substituting Eq. (B3) into Eq. (13), then from Eq. (32), we can
btain

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
cn = 1

M0
1,0(�, �)

[
M0

0,n(�, �) −
n−1∑
k=1

M0
1,k(�, �)

n!
(n − k)!k

an,m = −
m∑

j=1

1
j!

an−1,m−j+1cj

a0,m = ı(m − 1)
′
n = Lcn (B4)

Substituting Eq. (B3) into Eq. (B1) again, we can obtain cn as fol-
ows, c1 = M0

0,1(�, �)/M0
1,0(�, �), c2 = (M0

0,2(�, �) − 2c1M0
1,1(�, �) +
18 (2011) 4009–4024 4019

c2
1M0

2,0(�, �))/M0
1,0(�, �), etc. Generally, cn can be given by the fol-

lowing recurrence formula:

k +
n∑

k=2

k∑
m=2

n!
m!(k − m)!

M0
m,k−m(�, �)am,n−k+1

]
(B5)

where an,m are intermediate variables, ı(m) is the discrete ı func-
tion. The resulted moments above can be simplified further by
change of variables as

∑
j

k′
aj

p + kdj
=
∑

j

k′
aj

∑
i=0

(−p)i

ki+1
dj

=
∑
i=0

(−p)i
∑

j

k′
aj

ki+1
dj

= K
∑
i=0

(−p)i 1
K

∑
j

Kj

ki
dj

= K
∑
i=0

(−p)i

k̃i
d

,

where K, Kj and k̃i
d

are defined by Eqs. (37) and (38). According to
above expression and Eq. (37), Eq. (21) changes to

A = −Dsaω2 − p

(
1 + k′

ˇ

(
1 +
∑
i=1

(−p)i

k̃i
d

))
(B6)

Eqs. (B2) and (B4)–(B6) are all used in the program for deriving
moments.

The program is written in Mathematica of Walfram. In the pro-
gram, fs, fm, fsm, M0��(n,m), c[n], a[n, m], kdw[j] and kp represent

f̃�s1�s1 (ω, p), f̃�m�m (ω, p), f̃��(ω, p), M0
n,m(�, �), cn, an,m, k̃j

d
and k′

correspondingly, the other symbols have the same meaning as
in the text, but all subscripts are written in the normal position.
f̃�s1�s1 (ω, p) and f̃�m�m (ω, p) are complex functions of molecular
velocity v. However, parameter v plays little role in the ultimate

results [11]. To simplify the results, in the program f̃�s1�s1 (ω, p) and
f̃�m�m (ω, p) are expanded in series of 1/v and the higher order terms
of 1/v are omitted.

The program is as follows:
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P(Q) is denoted by fp[Q] in the code.
Module Elution is the main module. The whole pro-

gram is: Basicdata; (Basicdata1 or Basicdata2); Deriveddata;
Moment;Timeset; Pcor; Elution.
Y. Chen / J. Chromatog

ppendix C. Numerical inverse Laplace transform

Program of numerical inverse Laplace transform consists of sev-
ral modules. Modules Basicdata, Basicdata 1 and Basicdata 2 are
sed to input basic parameters, and the supplemental parameters
or two-site model and continuously distributed site model, respec-
ively. The basic parameters include column length, column radius,

ean linear velocity of fluid, diffusion coefficient, retention factor,
dsorption heat distribution parameters and so on. When pres-
ure correction, injection correction and extracolumn correction
re required, Pin, tin and �ex need to input.

Module Deriveddata is used to calculate all parameters needed
n the program from the basic parameters. Module Moment is used
o calculate the moments of elution curves and used to evaluate
he step size of 
p. Module Timeset is used to set the time value at
hich the value of elution curve is to be calculated. Certainly, the

ime and the step size can also be given other values, and can be
djusted according to actual results. Module Pcor is used in pressure
orrection, but needs much more time. Some times the working

recision needs to set higher value.

In Eq. (21), k′
aj

is choosen as a basic parameter. But we would
ather want to calculate the elution curves from given k′. So we
ewrite Eq. (21) as
18 (2011) 4009–4024 4021

A = −Dsaω2 − p(1 + B) (C1)

where B is

B =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ˇ

k′kd

p + kd
for single-sites

1
ˇ

∑
j

k′
j
kdjPj

p + kdj
for multiple-sites

k′

ˇg

∫
˛′(Q )P(Q )

p + kd
dQ for continuous-sites

(C2)

in which

g =
∫

˛′(Q )
kd(Q )

P(Q )dQ (C3)



4 r. A 1218 (2011) 4009–4024
022 Y. Chen / J. Chromatog



r. A 1218 (2011) 4009–4024 4023
Y. Chen / J. Chromatog



4 r. A 12

R

[
[
[

[
[
[
[

[
[
[
[

[21] G.H. Stewart, S.L. Seager, J.C. Giddings, Anal. Chem. 31 (1959) 1738.
024 Y. Chen / J. Chromatog

eferences

[1] J.C. Giddings, H. Eyring, J. Phys. Chem. 59 (1955) 416.
[2] J.C. Giddings, J. Chem. Phys. 26 (1957) 169.
[3] A. Cavazzini, M. Remelli, F. Dondi, A. Felinger, Anal. Chem. 71 (1999) 3453.
[4] A. Felinger, A. Cavazzini, M. Remelli, F. Dondi, Anal. Chem. 71 (1999) 4472.
[5] A. Felinger, A. Cavazzini, F. Dondi, J. Chromatogr. A 1043 (2004) 149.
[6] L. Pasti, A. Cavazzini, A. Felinger, M. Martin, F. Dondi, Anal. Chem. 77 (2005)

2524.
[7] D.A. McQuarrie, J. Chem. Phys. 38 (1963) 437.

[8] F. Dondi, A. Betti, G. Blo, C. Bighi, Anal. Chem. 53 (1981) 496.
[9] F. Dondi, Anal. Chem. 54 (1982) 473.
10] Y. Chen, J. Radioanal. Nucl. Chem. A 123 (1988) 667.
11] Y. Chen, J. Chromatogr. A 1144 (2007) 221.
12] Y. Chen, Y. Tan, J. Chromatogr. A 1216 (2009) 1132.

[
[

[

18 (2011) 4009–4024

13] J.C. Giddings, J. Chem. Ed. 35 (1958) 588.
14] K. Yamaoka, T. Nakagawa, J. Chromatogr. 100 (1974) 1.
15] M.J.E. Golay, Anal. Chem. 40 (1968) 382.
16] J.H. de Boer, The Dynamical Character of Adsorption, Oxford University Press,

London, 1953, pp.4–45.
17] J.C. Giddings, J. Chromatogr. 5 (1961) 46.
18] F. Dondi, A. Cavazzini, M. Martin, Adv. Chromatogr. 43 (2005) 179.
19] A.T. James, A.J.P. Martin, Analist 77 (1952) 915.
20] M.J.E. Golay, in: D.H. Desty (Ed.), Gas Chromatography, Butterwort, London,

1958, pp. 36–53.
22] J.C. Giddings, Anal. Chem. 36 (1964) 741.
23] J.C. Sternberg, in: J.C. Giddings, R.A. Keller (Eds.), Advances in Chromatography,

2, Marcel Dekker, New York, 1966, pp. 205–270.
24] S.P. Cram, T.H. Glenn Jr., J. Chromatogr. 112 (1975) 329.


	Statistical theory of linear adsorption capillary chromatography with porous-layer stationary phase
	1 Introduction
	2 General Laplace transform of elution curves
	3 Residence time and displacement in a step
	4 Moments of elution curves
	5 Elution curves
	6 Effect of pressure drop and extracolumn
	7 Discussion
	8 Conclusions
	Acknowledgements
	Appendix A Approximate diffusion equation in porous media
	Appendix B Derivation of moments
	Appendix C Numerical inverse Laplace transform
	References


